Skip to main content
Log in

Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The budC gene encoding a meso-2,3-butanediol dehydrogenase (BlBDH) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli BL21(DE3). Sequence analysis reveals that this BlBDH belongs to short-chain dehydrogenase/reductase (SDR) superfamily. In the presence of NADH, BlBDH catalyzes the reduction of diacetyl to (3S)-acetoin (97.3 % ee), and further to (2S,3S)-2,3-butanediol (97.3 % ee and 96.5 % de). Similar to other meso-2,3-BDHs, it shows oxidative activity to racemic 2,3-butanediol whereas no activity toward racemic acetoin in the presence of NAD+. For diacetyl reduction and 2,3-butanediol oxidation, the pH optimum of BlBDH is 5.0 and 10.0, respectively. Unusually, it shows relatively high activity over a wide pH range from 5.0 to 8.0 for racemic acetoin reduction. BlBDH shows lower K m and higher catalytic efficiency toward racemic acetoin (K m = 0.47 mM, k cat /K m = 432 s–1·mM–1) when compared with 2,3-butanediol (K m = 7.25 mM, k cat /K m = 81.5 s–1·mM–1), indicating its physiological role in favor of reducing racemic acetoin into 2,3-butanediol. The enzymatic characterization of BlBDH provides evidence for the directed engineering of B. licheniformis for producing enantiopure 2,3-butanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, L. X., Zhang, L. J., Li, K., Wang, Y., Gao, C., Han, B. B., Ma, C. Q., & Xu, P. (2013). A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel biochemical. Biotechnology for Biofuels, 6, 123.

    Article  CAS  Google Scholar 

  2. Ji, X. J., Huang, H., & Ouyang, P. K. (2011). Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnology Advances, 29, 351–364.

    Article  CAS  Google Scholar 

  3. Li, L. X., Wang, Y., Zhang, L. J., Ma, C. Q., Wang, A. L., Tao, F., & Xu, P. (2012). Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 115, 111–116.

    Article  CAS  Google Scholar 

  4. Qi, G. F., Kang, Y. F., Li, L., Xiao, A. F., Zhang, S. M., Wen, Z. Y., Xu, D. H., & Chen, S. W. (2014). Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnology for Biofuels, 7, 16.

    Article  Google Scholar 

  5. Xu, G. C., & Ni, Y. (2015). Bioreductive preparation of ACE inhibitors precursor (R)-2-hydroxy-4-phenylbutanoate esters: recent advances and future perspectives. Bioresources and Bioprocessing, 2, 15.

    Article  Google Scholar 

  6. Ma, C. Q., Wang, A. L., Qin, J. Y., Li, L. X., Ai, X. L., Jiang, T. Y., Tang, H. Z., & Xu, P. (2009). Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Applied Microbiology and Biotechnology, 82, 49–57.

    Article  CAS  Google Scholar 

  7. Zhang, L. Y., Yang, Y. L., Sun, J. A., Shen, Y. L., Wei, D. Z., Zhu, J. W., & Chu, J. (2010). Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresource Technology, 101, 1961–1967.

    Article  CAS  Google Scholar 

  8. Ji, X. J., Huang, H., Du, J., Zhu, J. G., Ren, L. J., Hu, N., & Li, S. (2009). Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technology, 100, 3410–3414.

    Article  CAS  Google Scholar 

  9. Wang, A., Xu, Y. Q., Ma, C., Gao, C., Li, L. X., Wang, Y., Tao, F., & Xu, P. (2012). Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One, 7, e40442.

    Article  CAS  Google Scholar 

  10. Jurchescu, I. M., Hamann, J., Zhou, X., Ortmann, T., Kuenz, A., Prüβe, U., & Lang, S. (2013). Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Applied Microbiology and Biotechnology, 97, 6715–6723.

    Article  CAS  Google Scholar 

  11. Hassler, T., Schieder, D., Pfaller, R., Faulstich, M., & Sieber, V. (2012). Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresource Technology, 124, 237–244.

    Article  Google Scholar 

  12. Biswas, R., Yamaoka, M., Nakayama, H., Kondo, T., Yoshida, K., Bisaria, V. S., & Kondo, A. (2012). Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Applied Microbiology and Biotechnology, 94, 651–658.

    Article  CAS  Google Scholar 

  13. Yan, Y. J., Lee, C. C., & Liao, J. C. (2009). Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogen. Organic and Biomolecular Chemistry, 7, 3914–3917.

    Article  CAS  Google Scholar 

  14. González, E., Fernández, M. R., Larroy, C., Solà, L., Pericàs, M. A., Parés, X., & Biosca, J. A. (2000). Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. Journal of Biological Chemistry, 275, 35876–35885.

    Article  Google Scholar 

  15. Yu, B., Sun, J., Bommareddy, R. R., Song, L., & Zeng, A. P. (2011). Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Applied and Environmental Microbiology, 77, 4230–4233.

    Article  CAS  Google Scholar 

  16. Nicholson, W. L. (2008). The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Applied and Environmental Microbiology, 74, 6832–6838.

    Article  CAS  Google Scholar 

  17. Zhang, L. Y., Xu, Q. M., Zhan, S. R., Li, Y. Y., Lin, H., Sun, S. J., Sha, L., Hu, K. H., Guan, X., & Shen, Y. L. (2014). A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Applied Microbiology and Biotechnology, 98, 1175–1184.

    Article  CAS  Google Scholar 

  18. Giovannini, P. P., Medici, A., Bergamini, C. M., & Rippa, M. (1996). Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorganic and Medicinal Chemistry, 4, 1197–1201.

    Article  CAS  Google Scholar 

  19. Wang, Z., Song, Q. Q., Yu, M. L., Wang, Y. F., Xiong, B., Zhang, Y. J., Zheng, J. Y., & Ying, X. X. (2014). Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Applied Microbiology and Biotechnology, 98, 641–650.

    Article  CAS  Google Scholar 

  20. Zhang, L. Y., Xu, Q. M., Peng, X. Q., Xu, B. H., Wu, Y. H., Yang, Y. L., Sun, S. J., Hu, K. H., & Shen, Y. L. (2014). Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcesce. Journal of Industrial Microbiology and Biotechnology, 41, 1319–1327.

    Article  CAS  Google Scholar 

  21. Wang, Y., Tao, F., & Xu, P. (2014). Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. Journal of Biological Chemistry, 289, 6080–6090.

    Article  CAS  Google Scholar 

  22. Thanh, T. N., Jürgen, B., Bauch, M., Liebeke, M., Lalk, M., Ehrenreich, A., Evers, S., Maurer, K. H., Antelmann, H., Ernst, F., Homuth, G., Hecker, M., & Schweder, T. (2010). Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Applied Microbiology and Biotechnology, 87, 2227–2235.

    Article  CAS  Google Scholar 

  23. Raedts, J., Siemerink, M. A. J., Levisson, M., van der Oost, J., & Kengen, S. W. M. (2014). Molecular characterization of an NADPH-dependent acetoin reductase 2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB8052. Applied and Environmental Microbiology, 80, 2011–2020.

    Article  Google Scholar 

  24. Xu, G. C., Yu, H. L., Zhang, X. Y., & Xu, J. H. (2012). Access to optically active aryl halohyddrins using a substrate-tolerant carbonyl reductase discovered from Kluyveromyces thermotolerans. ACS Catalysis, 2, 2566–2571.

    Article  CAS  Google Scholar 

  25. Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jörnvall, H., & Oppermann, U. (2002). Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 277, 25677–25684.

    Article  CAS  Google Scholar 

  26. Jörnvall, H., Hedlund, J., Bergman, T., Oppermann, U., & Persson, B. (2010). Superfamilies SDR and MDR: from early ancestry to present forms. Emergence of three lines, a Zn-metalloenzyme, and distinct variabilities. Biochemical and Biophysical Research Communications, 396, 125–130.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (21276112 and 21506073), Natural Science Foundation of Jiangsu Province (BK20150003), the Fundamental Research Funds for the Central Universities (JUSRP51409B), the Program of Introducing Talents of Discipline to Universities (111-2-06), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ni.

Ethics declarations

Conflict of Interest

All the authors certify that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Applied Biochemistry and Biotechnology. Moreover, the study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support your conclusions. No data, text, or theories by others are presented as if they were our own. The submission has been received explicitly from all coauthors. Furthermore, authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results. The authors declare that they have no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GC., Bian, YQ., Han, RZ. et al. Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis . Appl Biochem Biotechnol 178, 604–617 (2016). https://doi.org/10.1007/s12010-015-1897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1897-3

Keywords

Navigation