Skip to main content
Log in

Synergistic Effects of Drought Stress and Photoperiods on Phenology and Secondary Metabolism of Silybum marianum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Silybum marianum is an important medicinal plant of the family Asteraceae, well known for its set of bioactive isomeric mixture of secondary metabolites “silymarin”, primarily acting as a hepato-protective agent. Abiotic stress augments plant secondary metabolism in different plant tissues to withstand harsh environmental fluctuations. In the current study, our aim was to induce drought stress in vitro on S. marianum under the influence of different photoperiod treatments to study the effects, with respect to variations in secondary metabolic profile and plant growth and development. S. marianum was extremely vulnerable to different levels of mannitol-induced drought stress. Water deficiency inhibited root induction completely and retarded plant growth was observed; however, phytochemical analysis revealed enhanced accumulation of total phenolic content (TPC), total flavonoid content (TFC), and total protein content along with several antioxidative enzymes. Secondary metabolic content was positively regulated with increasing degree of drought stress. A dependent correlation of seed germination frequency at mild drought stress and antioxidative activities was established with 2 weeks dark + 2 weeks 16/8 h photoperiod treatment, respectively, whereas a positive correlation existed for TPC and TFC when 4 weeks 16/8 h photoperiod treatment was applied. The effects of drought stress are discussed in relation to phenology, seed germination frequency, biomass build up, antioxidative potential, and secondary metabolites accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

TPC:

Total phenolic content

TFC:

Total flavonoid content

ROS:

Reactive oxygen species

TDZ:

Thidiazuron

BA:

6-Benzyladenine

GA3 :

Gibberellic acid

FW:

Fresh weight

DW:

Dry weight

WC:

Water content

DPPH:

1, 1-Diphenyl-2-picrylhydrazyl

PVP:

Polyvinyl pyrrolidone

BSA:

Bovine serum albumen

OD:

Optical density

POD:

Peroxidase

SOD:

Superoxide dismutase

NBT:

Nitro blue tetrazolium

ANOVA:

Analyses of variance

DMRT:

Duncan multiple range test

GAE:

Gallic acid equivalent

QUE:

Quercetin equivalent

FRSA:

Free radical scavenging activity

SDS-PAGE:

Sodium dodecyl sulfate-poly acrylamide gel electrophoresis

CAT:

Catalase

References

  1. Stamp, N. (2003). The Quarterly Review of Biology, 78, 23–55.

    Article  Google Scholar 

  2. Verpoorte, R. (1998). Drug Discovery Today, 3, 232–238.

    Article  CAS  Google Scholar 

  3. Ramakrishna, A., & Ravishankar, G. A. (2011). Plant Signaling and Behavior, 6, 1720–1731.

    Article  CAS  Google Scholar 

  4. Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Journal of Plant Physiology, 161, 1189–1202.

    Article  CAS  Google Scholar 

  5. Gonzalez-Dugo, V., Durand, J. L., Gastal, F., Bariac, T., & Poincheval, J. (2012). Environmental and Experimental Botany, 75, 258–267.

    Article  CAS  Google Scholar 

  6. Maurino, V. G., & Flugge, U. I. (2008). Plant signaling and Behavior, 3, 923.

    Google Scholar 

  7. Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A., & Igic, R. (2008). Food Chemistry, 111, 925–929.

    Article  CAS  Google Scholar 

  8. Chalker-Scott, L. (1999). Photochemistry and Photobiology, 70, 1–9.

    Article  CAS  Google Scholar 

  9. Larson, R. (1988). Phytochemistry, 27, 969–978.

    Article  CAS  Google Scholar 

  10. Kren, V., & Walterova, D. (2005). Biomedical Papers, 149, 29–41.

    Article  CAS  Google Scholar 

  11. Braithwaite, M. C., Tyagi, C., Tomar, L. K., Kumar, P., Choonara, Y. E., Pillay, V. (2013). Journal of Functional Foods doi:10.1016/j.jff.2013.09.022 doi:10.1016/j.jff.2013.09.022#doilink.

  12. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  13. Haq, I. U., Ullah, N., Bibi, G., Kanwal, S., Ahmad, M. S., & Mirza, B. (2011). Iranian Journal of Pharmaceutical Research, 11, 241–249.

    Google Scholar 

  14. Singleton, Vernon, L., Orthofer, R., Rosa, M., Lamuela-Raventos. (1999). Methods in Enzymology, 299, 152–178.

  15. Lee, S. K., Zakaria, H. M., Cheng, H. S., Luyengi, L., Gamez, E. J. C., Mehta, R., Kinghorn, A. D., & Pezzuto, J. M. (1998). Combinatorial Chemistry and High Throughput Screening, 1, 35–46.

    CAS  Google Scholar 

  16. Nayyar, H., & Gupta, D. (2006). Environmental and Experimental Botany, 58, 106–113.

    Article  CAS  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  18. Ullah, N., Haq, I. U., Safdar, N., & Mirza, B. (2013). Toxicology and Industrial Health, 5, 1–7.

    Google Scholar 

  19. Lagrimini, L. M. (1991). Plant Physiology, 96, 577–583.

    Article  CAS  Google Scholar 

  20. Giannopolitis, C. N., & Ries, S. K. (1977). Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  21. Sankhla, R., & Chawan, D. D. (1980). Biologia Plantarum, 22, 388–391.

    Article  Google Scholar 

  22. Hegarty, T. W. (1977). New Phytologist, 78, 349–359.

    Article  Google Scholar 

  23. Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Plant and Soil, 231, 243–254.

    Article  CAS  Google Scholar 

  24. Khan, M. A., Abbasi, B. H., Ahmed, N., & Ali, H. (2013). Industrial Crops and Products, 46, 105–110.

    Article  CAS  Google Scholar 

  25. Baranova, E. N., Gulevich, A. A., Kalinina-Turner, E. B., & Koslov, N. N. (2011). Russian Agricultural Sciences, 37, 11–19.

    Article  Google Scholar 

  26. Moghanibashi, M., Karimmojeni, H., Nikneshan, P., & Delavar, B. (2012). Plant Knowledge Journal, 1, 10–15.

    Google Scholar 

  27. Boyer, J. S. (1970). Plant Physiology, 46, 233–235.

    Article  CAS  Google Scholar 

  28. Martin, T., Oswald, O., & Graham, I. A. (2002). Plant Physiology, 128, 472–481.

    Article  CAS  Google Scholar 

  29. Sprent, J. I. (1972). New Phytologist, 71, 603–611.

    Article  Google Scholar 

  30. Zrenner, R., & Stitt, M. (1991). Plant, Cell and Environment, 14, 939–946.

    Article  CAS  Google Scholar 

  31. Alvarez, S., Marsh, E. L., Schroeder, S. G., & Schachtman, D. P. (2008). Plant, Cell and Environment, 31, 325–340.

    Article  CAS  Google Scholar 

  32. Yadav, R. K., Sangwan, R. S., Sabir, F., & Sangwan, N. S. (2013). Plant Physiology and Biochemistry, 74, 70–83.

    Article  Google Scholar 

  33. Cui, X. H., Murthy, H., Wu, C. H., & Paek, K. Y. (2010). Plant Cell, Tissue and Organ Culture, 103, 7–14.

    Article  CAS  Google Scholar 

  34. Bettaieb, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., & Marzouk, B. (2011). Acta Physiologiae Plantarum, 33, 1103–1111.

    Article  CAS  Google Scholar 

  35. Nir, I., Poljaxoff-Mayber, A., & Klein, S. (1970). Israel Journal of Botany, 19, 451–462.

    Google Scholar 

  36. Barnett, N. M., & Naylor, A. W. (1966). Plant Physiology, 41, 1222–1230.

    Article  CAS  Google Scholar 

  37. Good, A. G., & Zaplachinski, S. T. (1994). Physiologia Plantarum, 90, 9–14.

    Article  CAS  Google Scholar 

  38. Van der Hoorn, R. A. (2008). Annual Review of Plant Biology, 59, 191–223.

    Article  Google Scholar 

  39. Żelisko, A., & Jackowski, G. (2004). Journal of Plant Physiology, 161, 1157–1170.

    Article  Google Scholar 

  40. Turkan, I., Bor, M., Ozdemir, F., & Koca, H. (2005). Plant Science, 168, 223–231.

    Article  Google Scholar 

  41. Fu, J., & Huang, B. (2001). Environmental and Experimental Botany, 45, 105–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of Higher Education Commission (HEC) of Pakistan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Haider Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahir, A., Abbasi, B.H., Adil, M. et al. Synergistic Effects of Drought Stress and Photoperiods on Phenology and Secondary Metabolism of Silybum marianum . Appl Biochem Biotechnol 174, 693–707 (2014). https://doi.org/10.1007/s12010-014-1098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1098-5

Keywords

Navigation