Skip to main content
Log in

Comparative Analysis of Bacterial Expression Systems for Keratinase Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To explore a better expression system for the production of keratinase, the keratinase gene from Bacillus licheniformis BBE11-1 was expressed in Escherichia coli, Bacillus subtilis, and Pichia pastoris. The corresponding recombinant keratinases were named ker E, ker B, and ker P, respectively. All recombinant keratinases had an optimal pH at 10 although the pH stability of ker E and ker P was higher than that of ker E. The optimal temperature and thermostability of ker P were enhanced compared with those of ker E and ker B. The recombinant keratinases were inhibited by Mn2+ but experienced little influence from other metal ions. Furthermore, all recombinant keratinases could retain almost 80 % activity after treatment with 1 M hydrogen peroxide for 5 h. Under optimized conditions in a 3-L fermenter, the maximum keratinase activities obtained from recombinant B. subtilis and P. pastoris were 3,010 and 1,050 U/mL, respectively. This maximum keratinase activity from B. subtilis is the highest activity ever reported for any bacterial strain. These results indicate that B. subtilis is the ideal host for keratinase production, with potential applications in textile processing and feed supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brandelli, A., Daroit, D. J., & Riffel, A. (2010). Applied Microbiology and Biotechnology, 85, 1735–1750.

    Article  CAS  Google Scholar 

  2. Wang, H. Y., Guo, Y. M., & Shih, J. C. H. (2006). Poultry Science, 85, 69.

    Google Scholar 

  3. Wang, P., Wang, Q., Cui, L., Gao, M. R., & Fan, X. R. (2011). Fiber and Polymers, 12, 760–764.

    Article  CAS  Google Scholar 

  4. Itsune, O., Isao, M., Keizo, H., Naoya, I., Mayumi, H. & Hisami, M. (2002). Patent, JP 2002256294.

  5. Spyros, T. (2003). Patent, US 6627192 B1.

  6. Gupta, R., Sharma, R., & Beg, Q. K. (2012). Critical Reviews in Biotechnology, 33, 216–228.

    Article  Google Scholar 

  7. Tiwary, E., & Gupta, R. (2010). Journal of Agricultural and Food Chemistry, 58, 8380–8385.

    Article  CAS  Google Scholar 

  8. Lin, X., Wong, S. L., Miller, E. S., & Shih, J. C. (1997). Journal of Industrial Microbiology and Biotechnology, 19, 134–138.

    Article  CAS  Google Scholar 

  9. Lin, H. H., Yin, L. J., & Jiang, S. T. (2009). Journal of Agricultural and Food Chemistry, 57, 5321–5325.

    Article  CAS  Google Scholar 

  10. Radha, S., & Gunasekaran, P. (2009). Protein Expression and Purification, 64, 24–31.

    Article  CAS  Google Scholar 

  11. Sharma, R., & Gupta, R. (2010). Biotechnology Letters, 32, 1863–1868.

    Article  CAS  Google Scholar 

  12. Radha, S., & Gunasekaran, P. (2008). Bioresource Technology, 99, 5528–5537.

    Article  CAS  Google Scholar 

  13. Lin, X., Kelemen, D. W., Miller, E. S., & Shih, J. (1995). Applied and Environmental Microbiology, 61, 1469–1474.

    CAS  Google Scholar 

  14. Fang, S. Y., Li, J. H., Liu, L., Du, G. C., & Chen, J. (2011). Bioresource Technology, 102, 10671–10678.

    Article  CAS  Google Scholar 

  15. Van Dijl, J.M., & Hecker, M. (2013). Microb Cell Fact, 12, doi:10.1186/1475-2859-12-3.

  16. Yeh, C. M., Wang, J. P., & Su, F. S. (2007). Food Biotechnology, 21, 119–128.

    Article  CAS  Google Scholar 

  17. Damasceno, L. M., Huang, C. J., & Batt, C. A. (2012). Applied Microbiology and Biotechnology, 93, 31–39.

    Article  Google Scholar 

  18. Wang, Z. H., Wang, Y., Zhang, D. X., Li, J. H., Hua, Z. Z., Do, G. C., et al. (2010). Bioresource Technology, 101, 1318–1323.

    Article  CAS  Google Scholar 

  19. Yamamura, S., Morita, Y., Hasan, Q., Rao, S. R., Murakami, Y., Yokoyama, K., et al. (2002). Journal of Bioscience and Bioengineering, 93, 595–600.

    CAS  Google Scholar 

  20. Porres, J. M., Benito, M. J., & Lei, X. G. (2002). Biotechnological Letters, 24, 631–636.

    Article  CAS  Google Scholar 

  21. Chong, L. (2001). Science, 292, 446.

    Article  CAS  Google Scholar 

  22. Bostrom, M., Markland, K., Sanden, A. M., Hedhammar, M., Hober, S., & Larsson, G. (2005). Applied Microbiology and Biotechnology, 68, 82–90.

    Article  Google Scholar 

  23. Gupta, R., & Ramnani, P. (2006). Applied Microbiology and Biotechnology, 70, 21–33.

    Article  CAS  Google Scholar 

  24. Vieille, C., & Zeikus, G. J. (2001). Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  25. Prakash, P., Jayalakshmi, S. K., & Sreeramulu, K. (2010). Applied Microbiology and Biotechnology, 87, 625–633.

    Article  CAS  Google Scholar 

  26. Johnvesly, B., & Naik, G. R. (2001). Journal of Microbiology and Biotechnology, 11, 558–563.

    CAS  Google Scholar 

  27. Hu, H., Gao, J., He, J., Yu, B., Zheng, P., Huang, Z., Mao, X., Yu, J., Han, G., & Chen, D. (2013). Plos One, 8, doi: 10.1371/journal.pone.0058393.

  28. Wang, J. J., Rojanatavorn, K., & Shih, J. C. H. (2004). Biotechnology and Bioengineering, 87, 459–464.

    Article  CAS  Google Scholar 

  29. Hu, H., He, J., Yu, B., Zheng, P., Huang, Z., Mao, X., et al. (2012). Biotechnol Lett. doi:10.1007/s10529-012-1064-7.

    Google Scholar 

  30. Radha, S., & Gunasekaran, P. (2007). Journal of Applied Microbiology, 103, 1301–1310.

    Article  CAS  Google Scholar 

  31. Lin, H. H., Yin, L. J., & Jiang, S. T. (2009). Journal of Agricultural and Food Chemistry, 57, 3506–3511.

    Article  CAS  Google Scholar 

  32. Lin, H. H., Yin, L. J., & Jiang, S. T. (2009). Journal of Agricultural and Food Chemistry, 57, 7779–7784.

    Article  CAS  Google Scholar 

  33. Noronha, E. F., de Lima, B. D., de Sa, C. M., & Felix, C. R. (2002). World Journal of Microbiology and Biotechnology, 18, 563–568.

    Article  CAS  Google Scholar 

  34. Mitsuiki, S., Ichikawa, M., Oka, T., Sakai, M., Moriyama, Y., Sameshima, Y., et al. (2004). Enzyme and Microbial Technology, 34, 482–489.

    Article  CAS  Google Scholar 

  35. Friedrich, A. B., & Antranikian, G. (1996). Applied Microbiology and Biotechnology, 62, 2875–2882.

    CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National High Technology Research and Development Program of China (863 Program, 2011AA100905), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1135), the China Postdoctoral Science Foundation (2013M540538),the 111 project (111-2-06), and the Natural Science Foundation of Jiangsu Province (BK2012553).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Xiangru Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhang, J., Gu, L. et al. Comparative Analysis of Bacterial Expression Systems for Keratinase Production. Appl Biochem Biotechnol 173, 1222–1235 (2014). https://doi.org/10.1007/s12010-014-0925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0925-z

Keywords

Navigation