Skip to main content
Log in

Strategies for Enhancing Extracellular Secretion of Recombinant Cyclodextrin Glucanotransferase in E. coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cyclodextrin glycosyltransferase (CGTase) is an enzyme that produces cyclodextrins from starch by an intramolecular transglycosylation reaction. Due to the increasing industrial application of cyclodextrins in many fields such as pharmacy, agriculture, biotechnology, food, environment and cosmetics, CGTases have attracted the attention of many scientific researches. Undoubtedly, due to its well-known genetic properties, simplicity and capacity to accommodate many foreign proteins, Escherichia coli remains the most widely used host for recombinant proteins production and thus for CGTases. Like all other proteins, CGTases are originally produced in the cytoplasm, but expressing them out into the periplasm or further to the culture media is preferred due to several advantages such as simplified downstream processing and high expression level which otherwise would be costly, complicated and time consuming. Since E. coli, other than some of its degradative enzymes and toxins, does not normally secrete proteins extracellularly, many strategies have been tried to overcome this drawback using the recombinant technologies. Unfortunately, oversecretion of the recombinant proteins most of the time results in the formation of inactive protein aggregates, called inclusion bodies, which result as a consequence of the burden caused by the methods meant to enhance the secretion. Thus, in this mini-review, the few but most commonly used strategies which offered a solution to the enhancement of extracellular secretion of CGTase in its native state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astray, G., Gonzalez-Barreiro, C., et al. (2009). A review on the use of cyclodextrins in foods. Food Hydrocolloids, 23, 1631–1640.

    Article  CAS  Google Scholar 

  2. Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 10, 411–421.

    Article  CAS  Google Scholar 

  3. Biwer, A., Antranikian, G., et al. (2002). Enzymatic production of cyclodextrins. Applied Microbiology and Biotechnology, 59, 609–617.

    Article  CAS  Google Scholar 

  4. Biwer, A., & Heinzle, E. (2004). Process modeling and simulation can guide process development: case study α-cyclodextrin. Enzyme and Microbial Technology, 34, 642–650.

    Article  CAS  Google Scholar 

  5. Blackwood, A. D., & Bucke, C. (2000). Addition of polar organic solvents can improve the product selectivity of cyclodextrin glycosyltransferase Solvent effects on CGTase. Enzyme and Microbial Technology, 27, 704–708.

    Article  CAS  Google Scholar 

  6. Braun, P., Gerritse, G., et al. (1999). Improving protein secretion by engineering components of the bacterial translocation machinery. Current Opinion in Biotechnology, 10, 376–381.

    Article  CAS  Google Scholar 

  7. Cao, X., Jin, Z., et al. (2005). A novel cyclodextrin glycosyltransferase from an alkalophilic Bacillus species: purification and characterization. Food Research International, 38, 309–314.

    Article  CAS  Google Scholar 

  8. Charoensakdi, R., Iizuka, M., et al. (2007). A recombinant cyclodextrin glycosyltransferase cloned from Paenibacillus sp. strain RB01 showed improved catalytic activity in coupling reaction between cyclodextrins and disaccharides. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57, 53–59.

    Article  CAS  Google Scholar 

  9. Cheng, J., Wu, D., et al. (2011). High-level extracellular production of r-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). Journal of Agricultural and Food Chemistry, 59, 3797–3802.

    Article  CAS  Google Scholar 

  10. Choi, J. H., & Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64, 625–635.

    Article  CAS  Google Scholar 

  11. Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 76, 521–532.

    Article  CAS  Google Scholar 

  12. Ding, R., Li, Z., et al. (2010). Enhanced secretion of recombinant α-cyclodextrin glucosyltransferase from E. coli by medium additives. Process Biochemistry, 45, 880–886.

    Article  CAS  Google Scholar 

  13. Fink, A. L. (1999). Chaperone-mediated protein folding. Physiological Reviews 79.

  14. Giordano, F., Novak, C., et al. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380, 123–151.

    Article  CAS  Google Scholar 

  15. Goh, K. M., Mahadi, N. M., et al. (2007). The effects of reaction conditions on the production of γ-cyclodextrin from tapioca starch by using a novel recombinant engineered CGTase. Journal of Molecular Catalysis B: Enzymatic, 49, 118–126.

    Article  CAS  Google Scholar 

  16. Hannig, G., & Makrides, S. C. (1998). Strategies for optimizing heterologous protein expression in Escherichia coli. TIBTECH 16.

  17. Ismail, N. F., Hamdan, S., et al. (2011). A mutant L-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli. Biotechnology Letters. doi:10.1007/s10529-011-0517-8.

  18. Jana, S., & Deb, J. K. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology, 67, 289–298.

    Article  CAS  Google Scholar 

  19. Khushoo, A., Pal, Y., et al. (2005). Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Applied Microbiology and Biotechnology, 68, 189–197.

    Article  CAS  Google Scholar 

  20. Kim, M. H., Sohn, C. B., et al. (1998). Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiology Letters, 164, 411–418.

    Article  CAS  Google Scholar 

  21. Kim, S.-G., Kweon, D.-H., et al. (2005). Coexpression of folding accessory proteins for production of active cyclodextrin glycosyltransferase of Bacillus macerans in recombinant Escherichia coli. Protein Expression and Purification, 41, 426–432.

    Article  CAS  Google Scholar 

  22. Koebnik, R., Locher, K. P., et al. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology, 37(2), 239–253.

    Article  CAS  Google Scholar 

  23. Kolaj, O., Spada, S., et al. (2009). Use of folding modulators to improve heterologous protein production in Escherichia coli. Microbial Cell Factories, 8, 9.

    Article  Google Scholar 

  24. Kuo, C.-C., Lin, C.-A., et al. (2009). Production of cyclodextrin glucanotransferase from an alkalophilic Bacillus sp. by pH-stat fed-batch fermentation. Biotechnology Letters, 31, 1723–1727.

    Article  CAS  Google Scholar 

  25. Kwon, M.-J., et al. (2002). Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. Journal of Microbiology and Biotechnology, 12(6), 1002–1005.

    CAS  Google Scholar 

  26. Lee, Kwang-Woo, et al. (2002). Extracellular overproduction of β-cyclodextrin glucanotransferase in a recombinant E. coli using secretive expression system. Journal of Microbiology and Biotechnology, 12(5), 753–759.

    Google Scholar 

  27. Leemhuis, H., Kelly, R. M., et al. (2010). Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology, 85, 823–835.

    Article  CAS  Google Scholar 

  28. Leonhartsberger, S. (2006). E. coli expression system efficiently secretes recombinant proteins into culture broth. Bioprocess International.

  29. Li, Z. F., Gu, Z., et al. (2010). Delayed supplementation of glycine enhances extracellular secretion of the recombinant α-cyclodextrin glycosyltransferase in Escherichia coli. Applied Microbiology and Biotechnology, 85, 553–561.

    Article  CAS  Google Scholar 

  30. Li, Z. F., Li, B., et al. (2010). Extracellular expression and biochemical characterization of α-cyclodextrin glycosyltransferase from Paenibacillus macerans. Carbohydrate Research, 345, 886–892.

    Article  CAS  Google Scholar 

  31. Li, Z. F., Wang, M., et al. (2007). γ-Cyclodextrin: a review on enzymatic production and applications. Applied Microbiology and Biotechnology, 77, 245–255.

    Article  CAS  Google Scholar 

  32. Li, Z. F., Li, B., et al. (2009). Calcium leads to further increase in glycine-enhanced extracellular secretion of recombinant α-cyclodextrin glycosyltransferase in Escherichia coli. Journal of Agricultural and Food Chemistry, 57, 6231–6237.

    Article  CAS  Google Scholar 

  33. Low, K. O., Mahadi, N. M. et al. (2011). An effective extracellular protein secretion by an ABC transporter system in Escherichia coli: statistical modeling and optimization of cyclodextrin glucanotransferase secretory production. Journal of Industrial Microbiology and Biotechnology.

  34. Mergulhao, F. J. M., Summers, D. K., et al. (2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23, 177–202.

    Article  CAS  Google Scholar 

  35. Moriwaki, C., Costa, G. L., et al. (2007). Production and characterization of a new cyclodextrin glycosyltransferase from Bacillus firmus isolated from Brazilian soil. Process Biochemistry, 42, 1384–1390.

    Article  CAS  Google Scholar 

  36. Moriwaki, C., Ferreira, L. R., et al. (2009). A novel cyclodextrin glycosyltransferase from Bacillus sphaericus strain 41: production, characterization and catalytic properties. Biochemical Engineering Journal, 48, 124–131.

    Article  CAS  Google Scholar 

  37. Nishihara, K., Kanemori, M. et al. (1998). Chaperone coexpression plasmids: differential and synergistic roles of DnaK–DnaJ–GrpE and GroEL–GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Applied and Environmental Microbiology.

  38. Ong, R. M., Goh, K. M., et al. (2008). Cloning, extracellular expression and characterization of a predominant α-CGTase from Bacillus sp. G1 in E. coli. Journal of Industrial Microbiology and Biotechnology, 35, 1705–1714.

    Article  CAS  Google Scholar 

  39. Park, S.-L., et al. (2004). GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. Journal of Microbiology and Biotechnology, 14(1), 216–219.

    CAS  Google Scholar 

  40. Penninga, D., Strokopytov, B., et al. (1995). Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 25 1 affect activity and product specificity. Biochemistry, 34, 3368–3376.

    Article  CAS  Google Scholar 

  41. Qi, Q., & Zimmermann, W. (2005). Cyclodextrin glucanotransferase: from gene to applications. Applied Microbiology and Biotechnology, 66, 475–485.

    Article  CAS  Google Scholar 

  42. Rahman, K., Illias, R. M., et al. (2006). Molecular cloning of a cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. TS1-1 and characterization of the recombinant enzyme. Enzyme and Microbial Technology, 39, 74–84.

    Article  CAS  Google Scholar 

  43. Rosso, A. M., Ferrarotti, S. A., et al. (2002). Optimization of batch culture conditions for cyclodextrin glucanotransferase production from Bacillus circulans DF 9R. Microbial Cell Factories, 1, 3.

    Article  Google Scholar 

  44. Sheldon, E., Broedel, J., & Papciak, S. M. (2007). ACES™ signal sequence and YebF expression systems. Athena Enzyme Systems™.

  45. Shokri, A., & Larsson, G. (2004). Characterisation of the Escherichia coli membrane structure and function during fedbatch cultivation. Microbial Cell Factories, 3, 9.

    Article  Google Scholar 

  46. Shokri, A., Sanden, A. M., et al. (2003). Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Applied Microbiology and Biotechnology, 60, 654–664.

    CAS  Google Scholar 

  47. Slominska, L., Szostek, A., et al. (2002). Studies on enzymatic continuous production of cyclodextrins in an ultrafiltration membrane bioreactor. Carbohydrate Polymers, 50, 423–428.

    Article  CAS  Google Scholar 

  48. Sorensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 115, 113–128.

    Article  CAS  Google Scholar 

  49. Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98, 1743–1753.

    Article  CAS  Google Scholar 

  50. Takahara, M., Hibler, D. W. et al. (1985). The OmpA signal peptide directed secretion of staphylococcal nuclease A by Escherichia coli. The Journal of Biological Chemistry 260.

  51. Tardioli, P. W., Zanin, G. M., et al. (2006). Characterization of thermoanaerobacter cyclomaltodextrin glucanotransferase immobilized on glyoxyl-agarose. Enzyme and Microbial Technology, 39, 1270–1278.

    Article  CAS  Google Scholar 

  52. Thiemann, V., Donges, C., et al. (2004). Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Archives of Microbiology, 182, 226–235.

    Article  CAS  Google Scholar 

  53. Tonkova, A. (1998). Bacterial cyclodextrin glucanotransferase. Enzyme and Microbial Technology, 22, 678–686.

    Article  CAS  Google Scholar 

  54. Valle, E. M. M. D. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033–1046.

    Article  Google Scholar 

  55. van der Veen, B. A., van Alebeek, G. J., et al. (2000). The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. European Journal of Biochemistry, 267, 658–665.

    Article  Google Scholar 

  56. Veen, B. A., van den Uitdehaag, J. C. M., et al. (2000). The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Implications for product inhibition and product specificity. Journal of Biochemistry, 267, 3432–3441.

    Google Scholar 

  57. Veen, B. A., van den Uitdehaag, J. C. M., et al. (2000). Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochimica et Biophysica Acta, 1543, 336–360.

    Article  Google Scholar 

  58. Veen, B. A., van den Uitdehaag, J. C. M., et al. (2000). Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production. Journal of Molecular Biology, 296, 1027–1038.

    Article  Google Scholar 

  59. Villalonga, R., Cao, R., et al. (2007). Supramolecular chemistry of cyclodextrins in enzyme technology. Chemical Reviews, 107, 3088–3116.

    Article  CAS  Google Scholar 

  60. Wang, F., Du, G., et al. (2006). Regulation of CCR in the − CGTase production from Bacillus macorous by the specific cell growth rate control. Enzyme and Microbial Technology, 39, 1279–1285.

    Article  CAS  Google Scholar 

  61. Yoon, S. H., Kim, S. K., et al. (2010). Secretory production of recombinant proteins in Escherichia coli. Recent Patents on Biotechnology, 4, 23–29.

    Article  CAS  Google Scholar 

  62. Zhekova, B., Dobrev, G., et al. (2009). Approaches for yield increase of β-cyclodextrin formed by cyclodextrin glucanotransferase from Bacillus megaterium. World Journal of Microbiology and Biotechnology, 25, 1043–1049.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (30970057 and 31100048), the Key Technologies R & D Program of Jiangsu Province, China (BE2011711), the Key Program of National Natural Science Foundation of China (20836003), and the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesfai, B.T., Wu, D., Chen, S. et al. Strategies for Enhancing Extracellular Secretion of Recombinant Cyclodextrin Glucanotransferase in E. coli . Appl Biochem Biotechnol 167, 897–908 (2012). https://doi.org/10.1007/s12010-012-9747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9747-z

Keywords

Navigation