Skip to main content
Log in

Bioactive Electroconductive Hydrogels: The Effects of Electropolymerization Charge Density on the Storage Stability of an Enzyme-Based Biosensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Electrode-supported hydrogels were conferred with the biospecificity of enzymes during the process of electropolymerization to give rise to a class of bioactive, stimuli-responsive co-joined interpenetrating networks of inherently conductive polymers and highly hydrated hydrogels. Glucose responsive biotransducers were prepared by potentiostatic electropolymerization [750 mV vs. Ag/AgCl (3 M KCl)] of pyrrole at Poly(hydoxyethyl methacrylate)-based hydrogel-coated Pt micro-electrodes (Φ = 100 μm) from aqueous solutions of pyrrole and glucose oxidase (GOx; 0.4 M pyrrole, 1.0 mg/ml GOx) to 1.0 and 10.0 mC/cm2. Polypyrrole was them over-oxidized by cyclic voltammetry (0–1.2 V vs. Ag/AgCl, 40 cycles in PBKCl, pH = 7.0). Biotransducers were stored at 4 °C in PBKCl for up to 18 days. Amperometric dose–response at 0.4 V vs. Ag/AgCl followed by Lineweaver–Burk analysis produced enzyme kinetic parameters as a function of electropolymerization charge density and storage time. Apparent Michaelis constant (K Mapp) increased from 18.6–152.0 mM (1.0 mC/cm2) and from 2.7–6.1 mM (10.0 mC/cm2). Biotransducer sensitivity increased to 21.2 nA/mM after 18 days and to 12.8 pA/mM after 10 days for the 1.0 and 10.0 mC/cm2 membranes, respectively. Maximum current, I max, also increased over time to 2.7 nA (1.0 mC/cm2) and to 170 pA (10.0 mC/cm2). Electropolymerization of polypyrrole is shown to be an effective means for imparting bioactivity to a hydrogel-coated microelectrode. GOx was shown to be stabilized and to increase activity over time within the electroconductive hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guiseppi-Elie, A., et al. (2011). The effect of temperature on the impedimetric response of bioreceptor hosting hydrogels. Biosensors and Bioelectronics, 26(5), 2275–2280.

    Article  CAS  Google Scholar 

  2. Abraham, S., et al. (2005). Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials, 26, 4767–4778.

    Article  CAS  Google Scholar 

  3. Gawel, K., et al. (2010). Responsive hydrogels for label-free signal transduction within biosensors. Sensors, 10(5), 4381–4409.

    Article  CAS  Google Scholar 

  4. Guiseppi-Elie, A. (2010). Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials, 31(10), 2701–2716.

    Article  CAS  Google Scholar 

  5. Joseph, H., Owino, O., et al. (2008). Synthesis and characterization of poly (2-hydroxyethyl methacrylate)-polyaniline based hydrogel composites. Reactive and Functional Polymers, 68(8), 1239–1244.

    Article  Google Scholar 

  6. Justin, G., & Guiseppi-Elie, A. (2010). An electroconductive blend of p(HEMA-co-PEGMA-co-HMMA-co-SPMA) hydrogels and p(Py-co-PyBA): in vitro biocompatibility. Journal of Bioactive and Compatible Polymers, 25(2), 121–140.

    Article  CAS  Google Scholar 

  7. Cui, X., et al. (2003). In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials, 24(5), 777–787.

    Article  CAS  Google Scholar 

  8. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2002). Interferent suppression using a novel polypyrrole-containing hydrogel in amperometric enzyme biosensors. Electroanalysis, 14(9), 627–633.

    Article  CAS  Google Scholar 

  9. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2002). Polypyrrole-hydrogel composites for the construction of clinically important biosensors. Biosensors and Bioelectronics, 17(1–2), 53–59.

    Article  CAS  Google Scholar 

  10. Guiseppi-Elie, A. (2010). An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. J Anal and Bioanal Chem, 339(1), 403–419.

    Google Scholar 

  11. Guiseppi-Elie, A., Brahim, S., & Wilson, A. (2006). Biosensors based on electrically conducting polymers. In T. Skotheim & J. R. Reynolds (Eds.), Handbook of conducting polymers: conjugated polymer processing and applications (3rd ed., pp. 435–479). New York: Marcel Dekker. Biosensors based on electrically conducting polymers.

    Google Scholar 

  12. Brahim, S., et al. (2003). Chemical and biological sensors based on impedimetric detection using conductive polymers. Microchimica Acta, 143, 123–137.

    Article  CAS  Google Scholar 

  13. Yamato, H., Ohwa, M., & Wernet, W. (1995). Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. Journal of Electroanalytical Chemistry, 397(1), 163–170.

    Article  Google Scholar 

  14. Foulds, N. A., & Lowe, C. R. (1986). Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J Chem SocFaraday Trans, 82, 1259–1264.

    Article  CAS  Google Scholar 

  15. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2002). Bio-smart materials: kinetics of immobilized enzymes in p(HEMA)/p(pyrrole) hydrogels in amperometric biosensors. Macromolecular Symposia, 186, 63–73.

    Article  CAS  Google Scholar 

  16. Duffitt, G. L., & Pickup, P. G. (1991). Permselectivity of polypyrrole in acetonitrile. Journal of Physical Chemistry, 95(24), 9634–9635.

    Article  CAS  Google Scholar 

  17. Kotanen, C., Karunwi, O., & Guisepp-Elie, A. (2010). Physiological status monitoring for glucose and lactate during the onset of hemorrhagic shock. American Society of Gravitational and Space Biology Bulletin, 23(2), 55–63.

    Google Scholar 

  18. Rahman, A. R., Justin, G., & Guiseppi-Elie, A. (2009). Towards an implantable biochip for glucose and lactate monitoring using micro-disc electrode arrays (MDEAs). Biomedical Microdevices; BioMEMS and Biomedical NanoTechnology Biomedical Microdevices, 11(1), 75–85.

    Google Scholar 

  19. Guiseppi-Elie, A. and N.F. Sheppard Jr. Conferring biospecificity to electroconductive polymer-based biosensor devices. in ACS Northeast Regional Meeting (NERM). 1995. Rochester, NY.

  20. Guiseppi-Elie, A. (2011). An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Analytical and Bioanalytical Chemistry, 399(1), 403–419.

    Article  CAS  Google Scholar 

  21. Brahim, S., & Guiseppi-Elie, A. (2005). Electroconductive hydrogels: electrical and electrochemical properties of polypyrrole-poly(HEMA) composites. Electroanalysis, 17(7), 556–570.

    Article  CAS  Google Scholar 

  22. Boztas, A. O., & Guiseppi-Elie, A. (2009). Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Biomacromolecules, 10(8), 2135–2143.

    Article  CAS  Google Scholar 

  23. Justin, G., & Guiseppi-Elie, A. (2009). Characterization of electroconductive blends of p(HEMA-co-PEGMA-co-HMMA-co-SPMA) hydrogels and p(Py-co-PyBA). Biomacromolecules, 10(9), 2539–2549.

    Article  CAS  Google Scholar 

  24. Theâvenot, D. R., et al. (1999). Electrochemical biosensors: recommended definitions and classification. Pure and Applied Chemistry, 71(12), 2333–2348.

    Article  Google Scholar 

  25. Guerrieri, A., et al. (1998). Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer. Biosensors and Bioelectronics, 13(1), 103–112.

    Article  CAS  Google Scholar 

  26. Wolowacz, S. E., Yon Hin, B. F. Y., & Lowe, C. R. (1992). Covalent electropolymerization of glucose oxidase in polypyrrole. Analytical Chemistry, 64(14), 1541–1545.

    Article  CAS  Google Scholar 

  27. Gao, F., Courjean, O., & Mano, N. (2009). An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification. Biosensors and Bioelectronics, 25(2), 356–361.

    Article  CAS  Google Scholar 

  28. Fortier, G., Brassard, E., & Bélanger, D. (1990). Optimization of a polypyrrole glucose oxidase biosensor. Biosensors and Bioelectronics, 5(6), 473–490.

    Article  CAS  Google Scholar 

  29. Fortier, G., & Bélanger, D. (1991). Characterization of the biochemical behavior of glucose oxidase entrapped in a polypyrrole film. Biotechnology and Bioengineering, 37(9), 854–858.

    Article  CAS  Google Scholar 

  30. Gros, P., & Bergel, A. (1995). Improved model of a polypyrrole glucose oxidase modified electrode. Journal of Electroanalytical Chemistry, 386(1–2), 65–73.

    Article  Google Scholar 

  31. Palmisano, F., et al. (1995). Correlation between permselectivity and chemical structure of overoxidized polypyrrole membranes used in electroproduced enzyme biosensors. Analytical Chemistry, 67(13), 2207–2211.

    Article  CAS  Google Scholar 

  32. Justin, G., et al. (2009). Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomedical Microdevices: BioMEMS and Biomedical NanoTechnology Biomedical Microdevices, 11(1), 103–115.

    CAS  Google Scholar 

  33. Rodríguez, I., Scharifker, B. R., & Mostany, J. (2000). In situ FTIR study of redox and overoxidation processes in polypyrrole films. Journal of Electroanalytical Chemistry, 491(1–2), 117–125.

    Article  Google Scholar 

  34. Witkowski, A., Freund, M. S., & Brajter-Toth, A. (1991). Effect of electrode substrate on the morphology and selectivity of overoxidized polypyrrole films. Analytical Chemistry, 63(6), 622–626.

    Article  CAS  Google Scholar 

  35. Otero, T. F., Márquez, M., & Suárez, I. J. (2004). Polypyrrole: diffusion coefficients and degradation by overoxidation. The Journal of Physical Chemistry. B, 108(39), 15429–15433.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B). A. M. Wilson acknowledges support from the Department of Chemistry, University of the West Indies, St. Augustine and ABTECH Scientific, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotanen, C.N., Tlili, C. & Guiseppi-Elie, A. Bioactive Electroconductive Hydrogels: The Effects of Electropolymerization Charge Density on the Storage Stability of an Enzyme-Based Biosensor. Appl Biochem Biotechnol 166, 878–888 (2012). https://doi.org/10.1007/s12010-011-9477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9477-7

Keywords

Navigation