Skip to main content
Log in

An Apolipophorin III Protein from the Hemolymph of Desert Locust, Schistocerca gregaria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Apolipophorin III (apoLp-III) from insects and apolipoprotein A-I from humans, are major component of the lipoprotein and share various properties. ApoLp-III is an abundant hemolymph protein. Besides its crucial role in lipid transport, apoLp-III is able to associate with fungal and bacterial membranes and stimulate cellular immune responses. ApoLp-III was isolated and purified from the hemolymph of desert locust Schistocerca gregaria by ion-exchange and reversed-phase chromatography. The purity and the molecular weight of apoLp-III were determined at ∼19,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. According to similarities in the amino terminal sequence, molar mass and retention on reversed-phase analytical HPLC column, this protein is a Schistocerca gregaria homologue of Locusta migratoria apoLp-III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

kDa:

Kilodalton

TFA:

Trifluoroacetic acid

PMSF:

Phenylmethylsulfonyl fluoride

TPCK:

N-Tosyl-phenylalanyl chloromethyl ketone

DTT:

Dithiothreitol

SGCI:

Schistocerca gregaria chymotrypsin inhibitor

MUTMAC:

4-Methylumbelliferyl p-(NNN-trimethylammonium)cinnamate

MUB:

4-Methylubelliferone

AMC:

7-Amino-4-methyl-coumarin

References

  1. Alexenizer, M., & Dorn, A. (2007). Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. Journal of Pesticide Science, 80, 205–215.

    Google Scholar 

  2. Baker, S. E., Hopkins, R. C., Blanchette, C. D., Walsworth, V. L., Sumbad, R., Fischer, N. O., et al. (2009). Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles. Journal of the American Chemical Society, 10(22), 7508–7509. 131.

    Article  Google Scholar 

  3. Bradford, M. R. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  4. Chino, H., Downer, R. G. H., Wyatt, G. R., & Gilbert, L. I. (1981). Lipophorins, a major class of lipoprotein of insect hemolymph. Insect Biochemistry, 11, 491.

    Article  Google Scholar 

  5. Chung, K. T., & Ourth, D. D. (2002). Purification and characterization of apolipophorin III from immune hemolymph of Heliotis virescens pupae. Comparative Biochemistry and Physiology, 132(2002), 505–514.

    Google Scholar 

  6. Cole, K. D., Fernando-Warnakulasuriya, G. J. P., Boguski, M. S., Freeman, M., Gordon, J. I., Clark, W. A., et al. (1987). Primary structure and comparative sequence analysis of an insect apolipoprotein: apolipophorin III from Manduca sexta. Journal of Biological Chemistry, 262, 11794–11800.

    CAS  Google Scholar 

  7. Downer, R. G. H., & Chino, H. (1985). Turnover of protein and diacylglycerol components of lipophorin in locust hemolymph. Insect Biochemistry, 15, 627–630.

    Article  CAS  Google Scholar 

  8. Duke, J. (2006). Dr. Duke’s Phytochemical and Ethnobotanical Databases. <http://www.ars-grin.gov/duke/.

  9. Fischer, N. O., Infante, E., Ishikawa, T., Blanchette, C. D., & Bourne, N. (2010). Conjugation to nickel-chelating nanolipoprotein particles increases the potency and efficacy of subunit vaccines to prevent West Nile encephalitis. Bioconjugate Chemistry, 21, 1018–1022.

    Article  CAS  Google Scholar 

  10. Isman, B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.

    Article  CAS  Google Scholar 

  11. Jameson, G. W., Adams, D. V., Kyle, W. S., & Elmore, D. T. (1973). Determination of the operational molarity of solutions of bovine α-chymotrypsin, trypsin, thrombin and factor Xa by spectrofluorimetric titration. Biochemical Journal, 131, 107–117.

    CAS  Google Scholar 

  12. Kanost, M. R., Boguski, M. S., Freeman, M., Gordon, J. I., Wyatt, G. R., & Wells, M. A. (1988). Primary structure of apolipophorin-III from the migratoria locust, Locusta migratoria. Journal of Biological Chemistry, 263, 10568–10573.

    CAS  Google Scholar 

  13. Katase, H., & Chino, H. (1984). Transport of hydrocarbons by hemolymph lipophorin in Locusta migratoria. Insect Biochemistry, 14, 1–6.

    Article  CAS  Google Scholar 

  14. Katase, H., & Chino, H. (1982). Transport of hydrocarbons by the lipophorin of insect hemolymph. Biochimica et Biophysica Acta, 710, 341–348.

    CAS  Google Scholar 

  15. Kawooya, J. K., Meredith, S. C., Wells, M. A., Kezdy, F. J., & Law, J. H. (1986). Physical and surface properties of insect apolipophorin III. Journal of Biological Chemistry, 261, 13588–13591.

    CAS  Google Scholar 

  16. Kawooya, J. K., Keim, P. S., Ryan, R. O., Shapiro, J. P., Samaraweera, P., & Law, J. H. (1984). Physical and chemical properties of microvitellogenin. A protein from the egg of the tobacco hornworm moth, Manduca sexta. Journal of Biological Chemistry, 259, 10733–10737.

    CAS  Google Scholar 

  17. Iimura, Y., Ishikawa, H., Yamamoto, K., & Sehnal, F. (1998). Hemagglutinating properties of apolipophorin III from the hemolymph of Galleria mellonella larvae. Archives of Insect Biochemistry and Physiology, 38, 119–125.

    Article  CAS  Google Scholar 

  18. Liu, H., Malhotra, V., & Ryan, R. O. (1991). Displacement of apolipophorin III from the surface of low density lipophorin by human apolipoprotein A-I. Biochemical and Biophysical Research Communications, 179, 734–740.

    Article  CAS  Google Scholar 

  19. Malik, Z., Amir, S., Pál, G., Buzás, Z., Várallyay, É., Antal, J., et al. (1999). Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P (1) and P (1)′ residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor. Biochimica et Biophysica Acta, 1434, 143–150.

    Article  CAS  Google Scholar 

  20. Mwangi, R. W., & Goldsworthy, G. J. (1980). Diacylglycerol-transporting lipoproteins and flight in Locusta. Journal of Insect Physiology, 27, 47–50.

    Article  Google Scholar 

  21. Narayanaswami, V., Wang, J., Kay, C. M., Scraba, D. G., & Ryan, R. O. (1996). Disulfide bond engineering to monitor conformational opening of apolipophorin III during lipid binding. Journal of Biological Chemistry, 271, 26855–26862.

    Article  CAS  Google Scholar 

  22. Narayanaswami, V., Weers, P. M. M., Bogerd, J., Kooiman, F. P., Kay, C. M., Scraba, D. G., et al. (1995). Spectroscopic and lipid binding studies on the amino and carboxyl terminal fragments of Locusta migratoria apolipophorin III. Biochemistry, 34, 11822–11830.

    Article  CAS  Google Scholar 

  23. Fischer, N. O., Blanchette, C. D., Segelke, B. W., Corzett, M., Chromy, B. A., Kuhn, E. A., et al. (2010). Isolation, characterization, and stability of discretely-sized nanolipoprotein particles assembled with apolipophorin-III. PloS One, 5(7), e11643.

    Article  Google Scholar 

  24. Niere, M., Meißlitzer, C., Dettloff, M., Weise, C., Ziegler, M., & Wiesner, A. (1999). Insect immune activation by recombinant Galleria mellonella apolipophorin III. Biochimica et Biophysica Acta, 1433, 16–26.

    Article  CAS  Google Scholar 

  25. Pattnaik, N. M., Mundall, E. C., Trambusti, B. G., Law, J. H., & Kezdy, F. J. (1979). Isolation and charaterization of a larval lipoprotein from the hemolymph of Manduca sextu. Comparative Biochemistry and Physiology, 63B, 469–476.

    CAS  Google Scholar 

  26. Ryan, R. O., Prasad, S. V., Henriksen, E. J., Wells, M. A., & Law, J. H. (1986). Lipoprotein interconversions in an insect, Manduca sexta. Evidence for a lipid transfer factor in the hemolymph. Journal of Biological Chemistry, 261, 562–563.

    Google Scholar 

  27. Shapiro, J. P., & Law, J. H. (1983). Locust adipokinetic hormone stimulates lipid mobilization in Manduca sexta. Biochemical and Biophysical Research Communications, 115, 924–931.

    Article  CAS  Google Scholar 

  28. Shapiro, J. P., Keim, P. S., & Law, J. H. (1984). Structural studies on lipophorin, an insect lipoprotein. Journal of Biological Chemistry, 259, 3680–3685.

    CAS  Google Scholar 

  29. Seo, S. J., Park, K. H., & Cho, K. H. (2008). Apolipophorin III from Hyphantria cunea shows different anti-oxidant ability against LDL oxidation in the lipid-free and lipid-bound state. Comparative Biochemistry and Physiology. B, 151, 433–439.

    Article  Google Scholar 

  30. Smith, A. F., Owen, L. M., Strobel, L. M., Chen, H., Kanost, M. R., Hanneman, E., et al. (1994). Exchangeable apolipoproteins of insects share a common structural motif. Journal of Lipid Research, 35, 1976–1984.

    CAS  Google Scholar 

  31. Sun, D., Ziegler, R., Milligan, C. E., Fahrbach, S., & Schwartz, L. M. (1995). Apolipophorin III is dramatically up-regulated during the programmed death of insect skeletal muscle and neurons. Journal of Neurobiology, 26, 119–129.

    Article  CAS  Google Scholar 

  32. Schwartz, L. M. (1992). Insect muscle as a model for programmed cell death. Journal of Neurobiology, 23(9), 1312–1326.

    Article  CAS  Google Scholar 

  33. Schwartz, L. M. (2008). Atrophy and programmed cell death of skeletal muscle. Cell Death and Differentiation, 15(7), 1163–1169.

    Article  CAS  Google Scholar 

  34. Ujvary. (2002). Transforming natural products into natural pesticides experience and expectations. Phytoparasitica, 30, 1–4.

    Article  Google Scholar 

  35. Van der Horst, D. J., van Hoof, D., van Marrewijk, W. J. A., & Rodenburg, K. W. (2002). Alternative lipid mobilization: the insect shuttle system. Molecular and Cellular Biochemistry, 239, 113–119.

    Article  Google Scholar 

  36. Van der Horst, D. J., Ryan, R. O., Van Heusden, M. C., Van Schulz, T. K. F., Doorn, J. M., Law, J. H., et al. (1988). An insect lipoprotein hybrid helps to define the role of apolipophorin III. Journal of Biological Chemistry, 63, 2027–2033.

    Google Scholar 

  37. Weers, P. M. M., & Ryan, R. O. (2006). Apolipophorin III: role model apolipoprotein. Insect Biochemistry and Molecular Biology, 36, 231–240.

    Article  CAS  Google Scholar 

  38. Weers, P. M. M., & Ryan, R. O. (2003). Apolipophorin III: a lipid-triggered molecular switch. Insect Biochemistry and Molecular Biology, 33, 1249–1260.

    Article  CAS  Google Scholar 

  39. Weers, P. M. M., Wang, J., Van der Horst, D. J., Kay, C. M., Sykes, B. D., & Ryan, O. R. (1998). Recombinant locust apolipophorin III: characterization and NMR spectroscopy. Biochimica et Biophysica Acta, 1393, 99–107.

    CAS  Google Scholar 

  40. Weise, C., Franke, P., Kopáček, P., & Wiesner, A. (1998). The primary structure of apolipohorin-III from the greater wax moth, Galleria mellonella. Journal of Protein Chemistry, 17, 633–641.

    Article  CAS  Google Scholar 

  41. Wiesner, A., Losen, S., Kopáček, P., Weise, C., & Götz, P. (1997). Isolated apolipophorin III from Galleria mellonella stimulates the immune response of this insect. Journal of Insect Physiology, 43, 383–391.

    Article  CAS  Google Scholar 

  42. Wilson, C., Wardell, M. R., Weisgraber, K. H., Mahley, R. W., & Agard, D. A. (1991). Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science, 252(5014), 1817–1822.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. Brigitte Wittman Liebold (Max Delbrück Centrum for Molecular Medicine, Germany) for determining the amino terminal sequence and Dr. Dick J. Van der Horst (Dept. Exp. Zoology, University of Utrecht, The Netherlands) for his generous gift of purified L. migratoria apoLp-III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar A. Malik.

Additional information

Zulfiqar A. Malik and Sumaira Amir contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, Z.A., Amir, S. An Apolipophorin III Protein from the Hemolymph of Desert Locust, Schistocerca gregaria . Appl Biochem Biotechnol 165, 1779–1788 (2011). https://doi.org/10.1007/s12010-011-9394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9394-9

Keywords

Navigation