Skip to main content

Advertisement

Log in

Idealization of scanning-derived triangle mesh models of prismatic engineering parts

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper presents a method to idealize scanning-derived triangle mesh models of prismatic engineering parts based on computer-aided design (CAD) modeling workflow. The objective is to mimic the designer’s approach to remodeling existing physical objects in the CAD software modeling environment in order to quickly and robustly idealize or perfect noisy mesh models derived from 3D scanning. The method consists of segmentation, feature identification, and a two-part idealization algorithm. The end result is an idealized parametric mesh model, which contains identical parametric feature information to that of the corresponding model in the current parameter-based CAD software. With the presented method, the scanning-derived mesh model of a prismatic engineering part can be quickly idealized, analyzed and then interactively modified, facilitating a streamlined scan-based product design platform. Extensive case studies have been performed, which involve a variety of synthesized and actual scanning-derived mesh models. The outcomes of these case studies clearly illustrate the effectiveness of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chang, K.H.: Solid modeling. In: Product design modeling using CAD/CAE, pp. 125–167 (2014)

  2. Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models—an introduction. Comput. Aided Des. 29(4), 255–268 (1997)

    Article  Google Scholar 

  3. Huber, D., Akinci, B., Tang, P.: Using laser scanners for modeling and analysis in architecture, engineering, and construction. In: Proceedings of the 44th Conference on Information Sciences and Systems, pp. 1–6 (2010)

  4. Geng, J.: Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics 3(2), 128–160 (2011)

    Article  Google Scholar 

  5. Barone, S., Casinelli, M., Frascaria M., Paoli A., Razionale, A.V.: Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing. Int. J. Interact. Des. Manuf. (2015, in press)

  6. Bern, M., Plassmann, P.: Mesh generation. In: Handbook of Computational geometry, pp. 291–332 (2000)

  7. Wang, W.: Reverse engineering: technology of reinvention. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  8. Frey, P., George, P.L.: Mesh generation. Wiley, New York (2010)

    Google Scholar 

  9. Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay mesh generation. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  10. Kuo, C.C., Yau, H.T.: A new combinatorial approach to surface reconstruction with sharp features. IEEE Trans. Vis. Comput. Graph. 12(1), 73–82 (2006)

    Article  Google Scholar 

  11. Li, X., Han, C.Y., Wee, W.G.: On surface reconstruction: a priority driven approach. Comput. Aided Des. 41(9), 626–640 (2009)

    Article  Google Scholar 

  12. Durupt, A., Remy, S., Ducellier, G., Bricogne, M.: KBRE: a proposition of a reverse engineering process by a KBE system. Int. J. Interact. Des. Manuf. 4(4), 227–237 (2010)

    Article  Google Scholar 

  13. Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Rapid and effective segmentation of 3D models using random walks. Comput. Aided Geom. Des. 26(6), 665–679 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Varady, T.: Automatic procedures to create CAD models from measured data. Comput. Aided Des. Appl. 5(5), 577–588 (2008)

    Article  Google Scholar 

  15. Weidlich, D., Cser, L., Polzin, T., Cristiano, D., Zickner, H.: Virtual reality approaches for immersive design. Int. J. Interact. Des. Manuf. 3(2), 103–108 (2009)

    Article  Google Scholar 

  16. Tching, L., Dumont, G., Perret, J.: Interactive simulation of CAD models assemblies using virtual constraints guidance. Int. J. Interact. Des. Manuf. 4(2), 95–102 (2010)

    Article  Google Scholar 

  17. Gao, C.H., Langbein, F.C., Marshall, A.D., Martin, R.R.: Approximate congruence detection of model features for reverse engineering. In: Proceedings of the shape modeling international, pp. 69–77 (2003)

  18. Langbein, F.C., Gao, C.H., Mills, B.I., Marshall, A.D., Martin, R.R.: Topological and geometric beautification of reverse engineered geometric models. In: Proceedings of the ACM symposium on solid modeling and applications, pp. 255–260 (2004)

  19. Karniel, A., Belsky, Y., Reich, Y.: Decomposing the problem of constrained surface fitting in reverse engineering. Comput. Aided Des. 37, 399–417 (2005)

    Article  Google Scholar 

  20. Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., Mitra, N.J.: GlobFit: consistently fitting primitives by discovering global relations. ACM Trans. Graph. 30(4), (Article No. 52) (2011)

  21. Wang, J., Gu, D., Gao, Z., Yu, Z., Tan, C., Zhou, L.: Feature-based solid model reconstruction. ASME J. Comput. Inf. Sci. Eng. 3, 011004 (2013)

    Article  Google Scholar 

  22. Benko, P., Kos, G., Varady, T., Andor, L., Martin, R.: Constrained fitting in reverse engineering. Comput. Aided Geom. Des. 19(3), 173–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ke, Y., Fan, S., Zhu, W., Li, A., Liu, F., Shi, X.: Feature-based reverse modeling strategies. Comput. Aided Des. 38(5), 485–506 (2006)

    Article  Google Scholar 

  24. Mohanghegh, K., Sadeghi, M.H., Abdullah, A.: Reverse engineering of turbine blades based on design intent. Int. J. Adv. Manuf. Technol. 32(9–10), 1009–1020 (2007)

    Article  Google Scholar 

  25. Barbero, B.R.: The recovery of design intent in reverse engineering problems. Comput. Ind. Eng. 56, 1265–1275 (2009)

    Article  Google Scholar 

  26. Wang, J., Gu, D., Gao, Z., Yu, Z., Tan, C., Zhou, L.: A framework for 3D model reconstruction in reverse engineering. Comput. Ind. Eng. 63, 1189–1200 (2012)

    Article  Google Scholar 

  27. Benko, P., Martin, R., Varady, T.: Algorithms for reverse engineering boundary representation models. Comput. Aided Des. 33(11), 839–851 (2001)

    Article  Google Scholar 

  28. Belyaev, A., Ohtake, Y.: A comparison of mesh smoothing methods. In: Proceedings of the Israel-Korea Bi-National conference on geometric modeling and computer graphics, pp. 83–87 (2003)

  29. Lieu, D., Sorby, S.: Visualization, modeling, and graphics for engineering design. Cengage Learning, Clifton Park (2009)

  30. Song, X., Juttler, B.: Modeling and 3D object reconstruction by implicitly defined surfaces with sharp features. Comput. Graph. 33, 321–330 (2009)

    Article  Google Scholar 

  31. Fan, H., Yu, Y., Peng, Q.: Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. Comput. Graph. 16(2), 312–324 (2010)

    Article  Google Scholar 

  32. Hristake, V.: Basics of solid modeling: your guide to 3D. AuthorHouse, Bloomington (2008)

  33. Chen, J.S.S., Feng, H.Y.: Automatic prismatic feature segmentation of scanning-derived meshes utilising mean curvature histograms. Virtual Phys. Prototyp. 9(1), 45–61 (2013)

    Article  Google Scholar 

  34. Shih, R.H.: AutoCAD 2013 Tutorial—second level: 3D modeling. SDC Publications, Mission (2012)

    Google Scholar 

  35. Chang, K.H.: Product design modeling using CAD/CAE. Elsevier, Amsterdam (2014)

    Google Scholar 

  36. Terek, Z., Varady, T.: Digital shape reconstruction using a variety of local geometric filters. In: Proceedings of the 3rd Hungarian conference on computer graphics and geometry (2005)

  37. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  38. Wang, J., Yu, Z.: Surface feature based mesh segmentation. Comput. Graph. 35(3), 661–667 (2011)

    Article  Google Scholar 

  39. Yan, D.M., Wang, W., Liu, Y., Yang, Z.: Variational mesh segmentation via quadric surface fitting. Comput. Aided Des. 44(11), 1072–1082 (2012)

    Article  Google Scholar 

  40. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Mathematics and visualization, pp. 35–57 (2003)

  41. Vollmer, J., Mencl, R., Muller, H.: Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)

    Article  Google Scholar 

  42. Besl, P.J., Jain, R.C.: Invariant surface characteristics for 3D object recognition in range images. Comput. Vis. Graph. Image Process. 33(1), 33–80 (1986)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsi-Yung Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.SS., Feng, HY. Idealization of scanning-derived triangle mesh models of prismatic engineering parts. Int J Interact Des Manuf 11, 205–221 (2017). https://doi.org/10.1007/s12008-015-0262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-015-0262-7

Keywords

Navigation