Skip to main content

Advertisement

Log in

Vancomycin-bearing Synthetic Bone Graft Delivers rhBMP-2 and Promotes Healing of Critical Rat Femoral Segmental Defects

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Bone grafts simultaneously delivering therapeutic proteins and antibiotics may be valuable in orthopaedic trauma care. Previously, we developed a poly(2-hydroxyethyl methacrylate)-nanocrystalline hydroxyapatite (pHEMA-nHA) synthetic bone graft that, when preabsorbed with 400-ng rhBMP-2/7, facilitated the functional repair of critical-size rat femoral defects. Recently, we showed that pHEMA-nHA effectively retains/releases vancomycin and rhBMP-2 in vitro. The success of such a strategy requires that the incorporation of vancomycin does not compromise the structural integrity of the graft nor its ability to promote bone healing.

Questions/purposes

(1) To evaluate the ability of pHEMA-nHA-vancomycin composites in combination with 3-µg rhBMP-2 to repair 5 mm rat femoral segmental defects, and (2) To determine if the encapsulated vancomycin impairs the graft/rhBMP-2-assisted bone repair.

Methods

pHEMA-nHA-vancomycin, pHEMA-nHA, or collagen sponge control with/without 3-µg rhBMP-2 were press-fit in 5 mm femoral defects in SASCO-SD male rats (289–300 g). Histology, microcomputed tomography, and torsion testing were performed on 8- and 12-week explants to evaluate the extent and quality of repair. The effect of vancomycin on the temporal absorption of endogenous BMP-2 and stromal cell-derived factor-1 was evaluated by immunohistochemistry. These factors are important for bone healing initiation and stem cell recruitment, respectively.

Results

Partial bridging of the defect with bony callus by 12 weeks was observed with pHEMA-nHA-vancomycin without rhBMP-2 while full bridging with substantially mineralized callus and partial restoration of torsional strength was achieved with 3-µg rhBMP-2. The presence of vancomycin changed the absorption patterns of endogenous proteins on the grafts, but did not appear to substantially compromise graft healing.

Conclusions

The composite pHEMA-nHA-vancomycin preabsorbed with 3-µg rhBMP-2 promoted repair of 5 mm rat femoral segmental defects. With the sample sizes applied, vancomycin encapsulation did not appear to have a negative effect on bone healing.

Clinical Relevance

pHEMA-nHA-vancomycin preabsorbed with rhBMP-2 may be useful in the repair of critical-size long bone defects prone to infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2A–C
Fig. 3
Fig. 4A–D
Fig. 5A–B
Fig. 6

Similar content being viewed by others

References

  1. Antoci V, Jr., Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res. 2007;462:200–206.

    Article  PubMed  Google Scholar 

  2. Bostrom MP, Seigerman DA. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J. 2005;1:9–18.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Carlisle E, Fischgrund JS. Bone morphogenetic proteins for spinal fusion. Spine J. 2005;5:240S–249S.

    Article  PubMed  Google Scholar 

  4. Castilla DM, Liu ZJ, Tian RX, Li Y, Livingstone AS, Velazquez OC. A novel autologous cell-based therapy to promote diabetic wound healing. Annals of Surgery. 2012;256:560–572.

    Article  PubMed Central  PubMed  Google Scholar 

  5. De Long WG, Jr., Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89:649–658.

    Article  PubMed  Google Scholar 

  6. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: What they can offer and what they cannot. J Bone Joint Surg Br. 2007;89:574–579.

    Article  CAS  PubMed  Google Scholar 

  7. Einhorn TA. Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am. 2003;85-A Suppl 3:82–88.

  8. Filion TM, Li X, Mason-Savas A, Kreider JM, Goldstein SA, Ayers DC, Song J. Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats. Tissue Eng Part A. 2011;17:503–511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gautschi OP, Frey SP, Zellweger R. Bone morphogenetic proteins in clinical applications. ANZ J Surg. 2007;77:626–631.

    Article  PubMed  Google Scholar 

  10. Guelcher SA, Brown KV, Li B, Guda T, Lee BH, Wenke JC. Dual-purpose bone grafts improve healing and reduce infection. J Orthop Trauma. 2011;25:477–482.

    Article  PubMed  Google Scholar 

  11. Holtom PD, Patzakis MJ. Newer methods of antimicrobial delivery for bone and joint infections. Instr Course Lect. 2003;52:745–749.

    PubMed  Google Scholar 

  12. Kallala R, Graham SM, Nikkhah D, Kyrkos M, Heliotis M, Mantalaris A, Tsiridis E. In vitro and in vivo effects of antibiotics on bone cell metabolism and fracture healing. Expert Opin Drug Saf. 2012;11:15–32.

    Article  CAS  PubMed  Google Scholar 

  13. Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Br. 2001;83:3–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kitaori T, Ito H, Schwarz EA, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis and Rheumatism. 2009;60:813–823.

    Article  CAS  PubMed  Google Scholar 

  15. Lee SH, Lee JE, Baek WY, Lim JO. Regional delivery of vancomycin using pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo. J Control Release. 2004;96:1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Li B, Brown KV, Wenke JC, Guelcher SA. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release. 2010;145:221–230.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Xu J, Filion T, Ayers D, Song J. pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute. Clin Orthop Relat Res. 2012.

  18. Melichercik P, Jahoda D, Nyc O, Klapkova E, Bartak V, Landor I, Pokorny D, Judl T, Sosna A. Bone grafts as vancomycin carriers in local therapy of resistant infections. Folia Microbiol (Praha). 2012;57:459–462.

    Article  CAS  PubMed  Google Scholar 

  19. Miao D, Scutt A. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J Histochem Cytochem. 2002;50:333–340.

    Article  CAS  PubMed  Google Scholar 

  20. Nussbaum DA, Gailloud P, Murphy K. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol. 2004;15:121–126.

    Article  PubMed  Google Scholar 

  21. Nyc O, Matejkova J. Stenotrophomonas maltophilia: Significant contemporary hospital pathogen - review. Folia Microbiol (Praha). 2010;55:286–294.

    Article  CAS  PubMed  Google Scholar 

  22. Pountos I, Georgouli T, Bird H, Kontakis G, Giannoudis PV. The effect of antibiotics on bone healing: current evidence. Expert Opin Drug Saf. 2011;10:935–945.

    Article  CAS  PubMed  Google Scholar 

  23. Prokuski L. Prophylactic antibiotics in orthopaedic surgery. J Am Acad Orthop Surg. 2008;16:283–293.

    PubMed  Google Scholar 

  24. Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res. 2011;29:1070–1074.

    Article  CAS  PubMed  Google Scholar 

  25. Sasso RC, LeHuec JC, Shaffrey C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech. 2005;18 Suppl:S77–81.

    Article  PubMed  Google Scholar 

  26. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003;28:134–139.

  27. Song J, Xu J, Filion T, Saiz E, Tomsia AP, Lian JB, Stein GS, Ayers DC, Bertozzi CR. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. J Biomed Mater Res A. 2009;89:1098–1107.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics. 2006;38:1424–1429.

    Article  CAS  PubMed  Google Scholar 

  29. Wenke JC, Guelcher SA. Dual delivery of an antibiotic and a growth factor addresses both the microbiological and biological challenges of contaminated bone fractures. Expert Opin Drug Deliv. 2011;8:1555–1569.

    Article  CAS  PubMed  Google Scholar 

  30. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130:202–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank April Mason-Savas for histology support and Dr. James Potts for discussions on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Song PhD.

Additional information

The institution of all of the authors has received, during the study period, funding from the National Institutes of Health (R01AR055615).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

Each author certifies that his or her institution approved or waived approval for the reporting of this investigation and that all investigations were conducted in conformity with ethical principles of research.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skelly, J.D., Lange, J., Filion, T.M. et al. Vancomycin-bearing Synthetic Bone Graft Delivers rhBMP-2 and Promotes Healing of Critical Rat Femoral Segmental Defects. Clin Orthop Relat Res 472, 4015–4023 (2014). https://doi.org/10.1007/s11999-014-3841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3841-1

Keywords

Navigation