Skip to main content
Log in

Critical role of particle/polymer interface in photostability of nano-filled polymeric coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Nanoparticle-filled polymeric coatings have attracted great interest in recent years because the incorporation of nanofillers can significantly enhance the mechanical, electrical, optical, thermal, and antimicrobial properties of coatings. Due to the small size of the fillers, the volume fraction of the nanoparticle/polymer interfacial area in nano-filled systems is drastically increased, and the interfacial region becomes important in the performance of the nano-filled system. However, techniques used for characterizing nanoparticle/polymer interfaces are limited, and thus, the mechanism by which interfacial properties affect the photostability and the long-term performance of nano-filled polymeric coatings is not well understood. In this study, the role of the nanoparticle/polymer interface on the ultraviolet (UV) stability of a nano-ZnO-filled polyurethane (PU) coating system was investigated. The effects of parameters influencing the particle/polymer interfacial properties, such as size, loading, surface modification of the nanoparticles, on photodegradation of ZnO/PU films were evaluated. The nature of the interfacial regions before and after UV exposures were characterized by atomic force microscopy (AFM)-based techniques. Results have shown that the interfacial properties strongly affect chemical, thermo-mechanical, and morphological properties of the UV-exposed ZnO/PU films. By combining tapping mode AFM and novel electric force microscopy (EFM), the particle/polymer interfacial regions have been successfully detected directly from the surface of the ZnO/PU films. Further, our results indicate that ZnO nanoparticles can function as a photocatalyst or a photostabilizer, depending on the UV exposure conditions. A hypothesis is proposed that the polymers in the vicinity of the ZnO/PU interface are preferentially degraded or protected, depending on whether ZnO nanoparticles act as a photocatalyst or a photostabilizer in the polymers. This study clearly demonstrates that the particle/polymer interface plays a critical role in the photostability of nano-filled polymeric coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Schadler, LS, Kumar, SK, Benicewicz, BB, Lewis, SL, Harton, SE, “Designed Interfaces in Polymer Nanocompositites: A Fundamental Viewpoint.” MRS Bull., 32 335–340 (2007)

    Article  CAS  Google Scholar 

  2. Gao, J, Zhao, B, Itkis, ME, Bekyarova, E, Hu, H, Kranak, V, Yu, A, Haddon, RC, “Chemical Engineering of the Single-Walled Carbon Nanotube-Nylon 6 Interface.” J. Am. Chem. Soc., 128 7492–7496 (2006)

    Article  CAS  Google Scholar 

  3. Gong, X, Liu, J, Baskaran, S, Voise, RD, Young, JS, “Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites.” Chem. Mater., 12 1049–1052 (2000)

    Article  CAS  Google Scholar 

  4. Calvert, P, “Nanotube Composites: A Recipe for Strength.” Nature, 399 210–211 (1999)

    Article  CAS  Google Scholar 

  5. Zhu, J, Kim, J, Peng, H, Margrave, JL, Khabashesku, VN, Barrera, EV, “Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites Through Functionalization.” Nano Lett., 3 1107–1113 (2003)

    Article  CAS  Google Scholar 

  6. Velasco-Santos, C, Martinez-Hernandez, AL, Fisher, FT, Ruoff, R, Castano, VM, “Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites Through Chemical Functionalization.” Chem. Mater., 15 4470–4475 (2003)

    Article  CAS  Google Scholar 

  7. Akcora, P, et al., “Anisotropic Self-Assembly of Spherical Polymer-Grafted Nanoparticles.” Nat. Mater., 8 354–359 (2009)

    Article  CAS  Google Scholar 

  8. Nguyen, T, Granier, A, Steffens, C, Lee, H, Sharpiro, A, Martin, JW, “A Novel Method to Covalently Functionalize Carbon Nanotubes with Isocyanate for Polyurethane Nanocomposite Coatings.” Proc. ICE Coatings Tech Conference, Toronto, October 2007

  9. Drzal, LT, “The Interface in Epoxy Composites.” Adv. Polym. Sci., 75 1–32 (1986)

    Article  Google Scholar 

  10. Drzal, LT, Rich, MJ, Koenig, MF, Lloyd, PF, “Adhesion of Graphite Fibers to Epoxy Matrices: 1. The Role of Fiber Surface Treatment.” J. Adhes., 16 1–30 (1983)

    Article  CAS  Google Scholar 

  11. Drzal, LT, Rich, MJ, Koenig, MF, Lloyd, PF, “Adhesion of Graphite Fibers to Epoxy Matrices. 2. The Effect of Fiber Finish.” J. Adhes., 16 133–152 (1983)

    Article  CAS  Google Scholar 

  12. Granick, S, et al., “Macromolecules at Surfaces: Research Challenges and Opportunities from Tribology to Biology.” J. Polym. Sci. B: Polym. Phys., 41 2755–2793 (2003)

    Article  CAS  Google Scholar 

  13. Jones, RL, Kumar, SK, Ho, DL, Briber, RM, Russell, TP, “Chain Conformation in Ultrathin Polymer Films.” Nature, 400 146–149 (1999)

    Article  CAS  Google Scholar 

  14. Frank, B, et al., “Polymer Mobility in Thin Films.” Macromolecules, 29 6531 (1996)

    Article  CAS  Google Scholar 

  15. Ding, W, Eitan, A, Fisher, FT, Chen, X, Dikin, DA, Andrews, R, Brinson, LC, Schadler, LS, Ruoff, RS, “Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites.” Nano Lett., 3 1593–1597 (2003)

    Article  CAS  Google Scholar 

  16. Ciprari, D, Jacob, K, Tannenbaum, R, “Characterization of Polymer Nanocomposite Interphase and its Impact on Mechanical Properties.” Macromolecules, 39 6565–6573 (2006)

    Article  CAS  Google Scholar 

  17. Drzal, LT, “The Role of the Fiber-Matrix Interphase on Composite Properties.” Vacuum, 41 1615–1618 (1990)

    Article  CAS  Google Scholar 

  18. Li, X, et al., “Nanomechanical Characterization of Single-Walled Carbon Nanotube-Reinforced Epoxy Composites.” Nanotechnology, 15 1416–1423 (2004)

    Article  CAS  Google Scholar 

  19. Colling, JH, Dunderdale, J, “The Durability of Paint Films Containing Titanium Dioxide-Contraction, Erosion and Clear Layer Theories.” Prog. Org. Coat., 9 47–84 (1981)

    Article  CAS  Google Scholar 

  20. Clerici, C, Gu, X, Sung, LP, Forster, AM, Ho, DL, Stutzman, P, Nguyen, T, Martin, JW, “Effect of Pigment Dispersion on Durability of a TiO2 Pigmented Epoxy Coating during Outdoor Exposure.” In: Martin, JW, Ryntz, RA, Chin, J, Dickie, RA (eds.) Service Life Prediction of Polymeric Materials: Global Perspectives, p. 475. Springer, New York, NY (2009)

    Chapter  Google Scholar 

  21. Gu, X, et al., “Long-Term Performance of Nano-Filled Polymeric Materials: Effect of ZnO Nanoparticles on Photodegradation of A Waterborne Polyurethane Coating.” Proc. CoatingsTech Conference, Indianapolis, IN, April 2009

  22. Chin, J, Byrd, E, Embree, N, Garver, J, Dickens, B, Finn, T, Martin, J, “Accelerated UV Weathering Device Based on Intergrating Sphere Technology.” Rev. Sci. Instrum., 75 4951–4959 (2004)

    Article  CAS  Google Scholar 

  23. Chin, JW, Byrd, E, Embree, N, Martin, JW, Tate, JD, “Ultraviolet Chamber Based on Integrating Spheres for Use in Artificial Weathering.” J. Coat. Technol., 74 39–44 (2002)

    Article  CAS  Google Scholar 

  24. Zhao, M, Gu, X, Nguyen, T, “Surface and Subsurface Characterization of Nanostructures in Polymeric Coatings Using Quantitative Electric Force Microscopy.” Proceedings, CoatingsTech Conference, Indianapolis, IN, April 2009

  25. Bansal, A, et al., “Quantitative Equivalence Between Polymer Nanocomposites and Thin Polymer Films.” Nat. Mater., 4 693 (2005)

    Article  CAS  Google Scholar 

  26. Bansal, A, Yang, H, Li, C, Benicewicz, BC, Kumar, SK, Schadler, LS, “Controlling the Thermomechanical Properties of Polymer Nanocomposites by Tailoring the Polymer–Particle Interface.” J. Polym. Sci. B: Polym. Phys., 44 2944–2950 (2006)

    Article  CAS  Google Scholar 

  27. Ash, BJ, Schadler, LS, Siegel, RW, “Glass Transition Behavior of Alumina/Polymethylmethacrylate Nanocomposites.” Mater. Lett., 55 (1–2) 83 (2002)

    Article  CAS  Google Scholar 

  28. Starr, FW, Schroder, TB, Glotzer, SC, “Molecular Dynamics Simulation of a Polymer Melt With a Nanoscopic Particle.” Macromolecules, 35 4481–4492 (2002)

    Article  CAS  Google Scholar 

  29. Oh, H, Green, PF, “Polymer Chain Dynamics and Glass Transition in a Thermal Polymer/Nanoparticle Mixtures.” Nat. Mater., 8 139–143 (2009)

    Article  CAS  Google Scholar 

  30. Gu, X, HNguyen, T, Oudina, M, Martin, D, Kidah, B, Jasmin, J, Rezig, A, Sung, LP, Byrd, E, Martin, JW, “Microstructure and Morphology of Amine-Cured Epoxy Coatings Before and After Outdoor Exposures—An AFM Study.” J. Coat. Technol. Res., 2 (7) 547–556 (2005)

    Article  CAS  Google Scholar 

  31. Lin, F, Meier, DJ, “Latex Film Formation: Atomic Force Microscopy and Theoretical Results.” Prog. Org. Coat., 29 139–146 (1996)

    Article  CAS  Google Scholar 

  32. Dobler, F, Pith, T, Lambla, M, Holl, Y, “Coalescence Mechanisms of Polymer Colloids. I. Coalescence Under the Influence of Particle–Water Interfacial Tension.” J. Colloid Interface Sci., 152 1–11 (1992)

    Article  CAS  Google Scholar 

  33. Dobler, F, Pith, T, Lambla, M, Holl, Y, “Coalescence Mechanisms of Polymer Colloids. II: Coalescence with Evaporation of Water.” J. Colloid Interface Sci., 152 12–21 (1992)

    Article  CAS  Google Scholar 

  34. Zheng, J, Ozisik, B, Siegel, RW, “Disruption of Self-assembly and Altered Mechanical Behavior in Polyurethane/Zinc Oxide Nanocomposites.” Polymer, 46 10873–10882 (2005)

    Article  CAS  Google Scholar 

  35. McLean, RS, Sauer, BB, “Tapping-Mode AFM Studies Using Phase Detection for Resolution of Nanophases in Segmented Polyurethanes and Other Block Copolymers.” Macromolecules, 30 8314–8317 (1997)

    Article  CAS  Google Scholar 

  36. Raghavan, D, VanLandingham, M, Gu, X, Nguyen, T, “Characterization of Heterogeneity in PMMA/PB Blends with Atomic Force Microscopy.” Langmuir, 16 9448–9459 (2000)

    Article  CAS  Google Scholar 

  37. Raghavan, D, Gu, X, Nguyen, T, VanLandingham, MR, Karim, A, “Mapping Polymer Heterogeneity Using Atomic Force Microscopy—Phase Imaging and Nanoscale Indentation.” Macromolecules, 33 (7) 2573–2583 (2000)

    Article  CAS  Google Scholar 

  38. Raghavan, D, Gu, X, Nguyen, T, VanLandingham, MR, “Characterization of Chemical Heterogeneity in Polymer Systems Using Hydrolysis and Tapping Mode Atomic Force Microscopy.” J. Polym. Sci. B: Polym. Phys., 39 1460–1470 (2001)

    Article  CAS  Google Scholar 

  39. Raghavan, D, Gu, X, Nguyen, T, VanLandingham, MR, “Mapping Chemically Heterogeneous Polymer System Using Selective Chemical Reaction and Tapping Mode Atomic Force Microscopy.” Macromol. Symp., 167 297–305 (2001)

    Article  CAS  Google Scholar 

  40. Nguyen, T, Jasmin, J, Sung, L, Gu, X, Rezig, A, Martin, D, Martin, JW, “Relation Between Chemical Degradation and Thickness Loss of Clear Crosslinked Polymeric Coatings Exposed to UV.” In: Martin, JW, Ryntz, RA, Dickie, RA (eds.) Service Life Prediction: Challenge the Status Quo, p. 13. Federation of Societies for Coatings Technology, FSCT, Blue Bell, PA (2005)

    Google Scholar 

  41. VanLandingham, MR, Byrd, WE, Martin, JW, “On the Use of the Atomic Force Microscope to Monitor Physical Degradation of Polymeric Coating Surfaces.” J. Coat. Technol., 73 43–50 (2001)

    Article  CAS  Google Scholar 

  42. Lemaire, J, Siampiringue, N, “Prediction of Coating Lifetime Based on FTIR Microspectrophotometric Analysis of Chemical Evolutions.” In: Bauer, DR, Martin, JW (eds.) Service Life Prediction of Organic Coatings: A Systems Approach, ACS Symposium Series 772, p. 198. American Chemical Society, Oxford Press, NY (1999)

  43. Moustaghfir, A, et al., “Sputtered Zinc Oxide Coatings: Structural Study and Application to the Photoprotection of the Polycarbonate.” Surf. Coat. Technol., 180–181 642–645 (2004)

    Article  Google Scholar 

  44. Hegedus, C, Pepe, F, Lindenmuth, D, Burgard, D, “Zinc Oxide Nanoparticle Dispersions as Unique Additives for Coatings.” JCT CoatingsTech, April, 42–52 (2008)

  45. Li, YQ, Fu, SY, Mai, YW, “Preparation and Characterization of Transparent ZnO/Epoxy Nanocomposites With High-UV Shielding Efficiency.” Polymer, 47 2127–2132 (2006)

    Article  CAS  Google Scholar 

  46. Yang, R, Li, Y, Yu, J, “Photo-Stabilization of Linear Low Density Polyethylene by Inorganic Nanoparticles.” Polym. Degrad. Stab., 88 168–174 (2005)

    Article  CAS  Google Scholar 

  47. Chandramouleeswaran, S, Mhaske, ST, Kathe, AA, Varadarajan, PV, Prasad, V, Vigneshwaran, N, “Functional Behaviour of Polypropylene/ZnO–Soluble Starch Nanocomposites.” Nanotechnology, 18 385702 (2007)

    Article  Google Scholar 

  48. Li, R, Zhao, H, “A Study of Photo-degradation of Zinc Oxide (ZnO) Filled Polypropylene Nanocomposites.” Polymer, 47 3207–3217 (2006)

    Article  Google Scholar 

  49. Baker, P, Branch, A, “The Interaction of Modern Sunscreen Formulation with Surface Coatings.” Prog.Org. Coat., 62 313–320 (2008)

    Article  Google Scholar 

  50. Yang, H, Zhu, S, Pan, N, “Studying the Mechanisms of Titanium Dioxide as Ultraviolet-Blocking Additive for Films and Fabrics by an Improved Scheme.” J. Appl. Polym. Sci., 92 3201–3210 (2004)

    Article  CAS  Google Scholar 

  51. Xue, T, Nie, D, Zeng, S, Zhang, Y, Pan, L, “Preparation and Characterization of Coated ZnO Nanoparticles.” Key Eng. Mater., 368–372 1636–1638 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Chen, G., Zhao, M. et al. Critical role of particle/polymer interface in photostability of nano-filled polymeric coatings. J Coat Technol Res 9, 251–267 (2012). https://doi.org/10.1007/s11998-011-9326-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-011-9326-1

Keywords

Navigation