Skip to main content
Log in

Ultraviolet-C Light Inactivation Kinetics of E. coli on Bologna Beef Packaged in Plastic Films

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 19 October 2017

This article has been updated

Abstract

This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging treatment on Escherichia coli K-12 on bologna meat packaged in polyethylene (PE), oriented polypropylene (OPP), and ClearTite® films. Findings show that PE film had the highest measured UV-C light transparency among the 15 tested films, at 76 %, followed by PP and OPP films, with 59 and 57 %, respectively. Exposure of PE film inoculated with E. coli K-12 with UV-C light resulted in a 4.6 log CFU/ml reduction after a dose of 164 mJ/cm2. Reduction of E. coli K-12 on inoculated bologna packaged in PE film was higher (1.48 log CFU/g) compared to the other films (OPP and ClearTite®) following treatment with 0.406 J/cm2 of UV-C. The surface-free energy of films was used as an indicator for changes to film surface properties. UV-C light exposure of PE, OPP, and ClearTite® films at doses in this study had no significant effect (P ≥ 0.05) on the surface properties of the treated films. This study demonstrated that treating ready-to-eat meat products, such as a bologna with UV-C light after packaging, can reduce E. coli populations by a 1.5 log cycle without negatively impacting the surface properties of plastic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 19 October 2017

    The original version of this article unfortunately have mistake in Author list and in affiliation field.

References

  • Abad, M. J., Ares, A., Barral, L., Cano, J., Diez, F. J., Lopez, J., & Ramirez, C. (2002). Characterization of biaxially oriented polypropylene films by atomic force microscopy and microthermal analysis. Journal of Applied Polymer Science, 85(7), 1553–1561.

    Article  CAS  Google Scholar 

  • Assche, G. V., Ghanem, A., Lhost, O., & Mele, B. V. (2005). Through-thickness analysis of the skin layer thickness of multi-layered biaxially-oriented polypropylene films by micro-thermal analysis. Polymer, 46(18), 7132–7139.

    Article  Google Scholar 

  • Ayoub, A., & Massardier-Nageotte, V. (2012). The effect of UV-irradiation and molten medium on the mechanical and thermal properties of polystyrene–polycarbonate blends. Journal of Applied Polymer Science, 124, 1096–1105.

    Article  CAS  Google Scholar 

  • Bar, G. K., & Meyers, G. F. (2004). The application of atomic force microscopy to the characterization of industrial polymer materials. MRS Bulletin, 7, 464–470.

    Article  Google Scholar 

  • Baumhardt-Neto, R., & Paoli, M. (1993). Mechanical degradation of polypropylene: effect of UV irradiation. Polymer Degradation and Stability, 40, 59–64.

    Article  CAS  Google Scholar 

  • Campos, A., Marconcini, J. M., Martins-Franchetti, S. M., & Mattoso, L. H. (2012). The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polymer Degradation and Stability, 97(10), 1948–1955.

    Article  CAS  Google Scholar 

  • Chun, H. H., Kim, J. Y., Lee, B. D., Yu, D. J., & Song, K. B. (2010). Effect UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage. Food Control, 21, 276–280.

    Article  CAS  Google Scholar 

  • Coles, R., McDowell, D., & Kirwan, M. J. (2003). Food packaging technology (1st ed., pp. 174–200). USA: CRC.

    Google Scholar 

  • Couvert, O., Gaillard, S., Savy, N., Mafart, P., & Leguerinel, I. (2005). Survival curves of heated bacterial spores: effect of environmental factors on Weibull parameters. International Journal of Food Microbiology, 101, 73–81.

    Article  Google Scholar 

  • DeGeyter, N., & Leys, R. M. (2008). Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surface and Interface Analysis, 40, 608–611.

    Article  CAS  Google Scholar 

  • Djenane, D., Sanchez-Escalan, A., Beltran, J. A., & Roncales, P. (2001). Extension of the retail display life of fresh beef packaged in modified atmosphere by varying lighting conditions. Journal of Food Science, 66(1), 181–186.

    Article  CAS  Google Scholar 

  • Fang, T., Chang, W., & Weng, C. (2005). Surface analysis of nanomachined films using atomic force microscopy. Materials Chemistry and Physics, 92, 379–383.

    Article  CAS  Google Scholar 

  • FDA. (2003). Code of Federal Regulations 179.39,Ultraviolet radiation for the processing and treatment of food. US Federal Drug Administration.

  • Ganan, M., Hierro, E., Hospital, X., Barroso, E., & Fernandez, M. (2013). Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control, 32, 512–517.

    Article  Google Scholar 

  • Garbassi, F., Mora, M., & Occhiello, E. (1998). Polymer surfaces: from physics to technology. Chichester: Wiley.

    Google Scholar 

  • Gennadios, A., Rhim, J. W., Handa, A., Weller, C. L., & Hanna, M. A. (1998). Ultraviolet radiation affects physical and molecular properties of soy protein films. Journal of Food Science, 63(2), 1–4.

    Google Scholar 

  • Geretovszky, Z., Hopp, B., Bertoti, I., & Boyd, I. W. (2002). Photodegradation of polycarbonate under narrow hand irradiation at 172 nm. Applied Surface Science, 186, 85–90.

    Article  CAS  Google Scholar 

  • Guadagno, L., Naddeo, C., Raimondo, M., & Vittoria, V. (2008). Structural and morphological changes during UV irradiation of the trans-planar form of syndiotactic polypropylene. Polymer Degradation and Stability, 93, 176–187.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2014). Edible films based on native and phosphated 80:20 waxy:normal corn starch. Starch-Starke, 66, 1–8.

    Article  Google Scholar 

  • Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015a). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids, 45, 211–217.

    Article  Google Scholar 

  • Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S., & Fama, L. (2015b). Physico-chemical properties of edible films derived from native and phosphate cush-cush yam and cassava starches. Food Packaging and Shelf Life., 3, 1–8.

    Article  Google Scholar 

  • Hareesh, K., Pandey, A. K., Sangappa, Y., Bhat, R., Venkatarman, A., & Sanjeev, G. (2013). Changes in the properties of lexan polycarbonate by UV irradiation. Nuclear Instruments and Methods in Physics Research B, 295, 61–68.

    Article  CAS  Google Scholar 

  • Hierro, E., Barroso, E., Hoz, L., Ordonez, J., Manzano, S., & Fernandez, M. (2011). Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. Innovative Food Science and Emerging Technologies., 12, 275–281.

    Article  Google Scholar 

  • Hurley, C. R., & Leggett, G. J. (2009). Quantitative investigation of the photodegradation of polyethylene terephthalate film by friction force microscopy, contact- angle goniometry, and X-ray photoelectron spectroscopy. Applied Materials and Interfaces., 8, 1688–1697.

    Article  Google Scholar 

  • Jung, D. Y., Abdel-hay, A., & Lim, J. K. (2012). Study on applied load irradiation of ultraviolet (UV) against of polycarbonate characteristics: consequences on mechanical properties. Advanced Materials Research, 472–475, 1361–1365.

    Article  Google Scholar 

  • Kaczmarek, H., & Chabereka, H. (2006). The influence of UV-irradiation and support type on surface properties of poly(methyl methacrylate) thin films. Applied Surface Science, 252, 8185–8192.

    Article  CAS  Google Scholar 

  • Kass, G., & Weidemann, J. F. (1973). Effects of ultraviolet irradiation on the growth of micro-organisms on chilled beef slices. Journal of Food Technology, 8, 59–69.

    Article  Google Scholar 

  • Keklik, N. M., Demirci, A., & Puri, V. M. (2009). Inactivation of Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters using pulsed UV-light. Journal of Food Science, 74(8), 431–439.

    Article  Google Scholar 

  • Keklik, N. M., Demirci, A., & Puri, V. M. (2010). Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light. Poultry Science, 89, 570–581.

    Article  CAS  Google Scholar 

  • Kim, T., Silva, J. L., & Chen, T. C. (2002). Effects of UV irradiation on selected pathogens in peptone water and on stainless steel and chicken meat. Journal of Food Protection, 65(7), 1142–1145.

    Article  CAS  Google Scholar 

  • Komolprasert, V., & Morehouse. (2004). Irradiation of food and packaging (1st ed.). Washington, DC: American Chemical Society.

    Book  Google Scholar 

  • Koutchma, T. N., Forney, L. J., & Moraru, C. I. (2009). Ultraviolet light in food technology: principles and applications (1st ed.). Boca Raton, FL: CRC.

    Book  Google Scholar 

  • Martinus, S. J., & Boekel, V. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(2002), 139–159.

    Google Scholar 

  • Pan, L., Jung, S., & Yoon, R.-H. (2011). Effect of hydrophobicity on the stability of wetting films of water formed on gold surfaces. Journal of Colloid and Interface Science, 361, 321–330.

    Article  CAS  Google Scholar 

  • Qiseth, S. K., Krozer, A., Lausmaa, J., & Kasemo, B. (2004). Ultraviolet light treatment of thin high-density polyethylene films monitored with a quartz crystal microbalance. Journal of Applied Polymer Science, 92, 2833–2839.

    Article  Google Scholar 

  • Robertson, G. L. (2006). Food packaging: principles and practice (2nd ed.). Boca Raton, FL: CRC.

    Google Scholar 

  • Sastry, S. K., Datta, A. K., & Worobo, R. W. (2001). Ultraviolet light. Journal of Food Science Supplement, 65(s8), 90–92.

  • Shimizu, R. N., & Demarquette, N. R. (2000). Evaluation of surface energy of solid polymers using different models. Journal of Applied Polymer Science, 76, 1831–1845.

    Article  CAS  Google Scholar 

  • Sionkowska, A., Wisniewski, M., Skopinska, J., Vicini, S., & Marsano, E. (2005). The influence of UV irradiation on the mechanical properties of chitosan/poly (vinyl pyrrolidone) blends. Polymer Degradation and Stability, 88, 261–267.

    Article  CAS  Google Scholar 

  • Sommers, C. H., Cooke, P. H., Fan, X., & Sites, J. E. (2009a). Ultraviolet light (254 nm) inactivation of Listeria monocytogenes on frankfurters that contain potassium lactate and sodium diacetate. Journal of Food Science, 74(3), 114–119.

    Article  Google Scholar 

  • Sommers, C. H., Geveke, D. J., Pulsfus, S., & Lemmenes, B. (2009b). Inactivation of Listeria innocua on frankfurters by ultraviolet light and flash pasteurization. Journal of Food Science, 74(3), 138–141.

    Article  Google Scholar 

  • Sommers, C. H., Scullen, O. J., & Sites, J. E. (2010). Inactivation of foodborne pathogens on frankfurters using ultraviolet light and GRAS antimicrobials. Journal of Food Safety, 30, 666–678.

    Article  Google Scholar 

  • Stermer, R. A., Lasater-Smith, M., & Brasington, C. F. (1987). Ultraviolet radiation—an effective bactericide for fresh meat. Journal of Food Protection, 50(2), 108–111.

    Article  Google Scholar 

  • Syamaladevi, R. M., Lu, X., Sablani, S. S., Insan, S. K., Adhikari, A., Killinger, K., Rasco, B., Dhingra, A., Bandyopadhyay, A. & Annapure, U. S. (2013). Inactivation of Escherichia coli population on fruit surfaces using ultraviolet-C light: Influence of surface characteristics. Food and Bioprocess Technology, 6, 2959–2973.

  • Toldra, F. (2009). Safety of meat and processed meat (1st ed.). New York: Springer.

    Book  Google Scholar 

  • Vinogradova, O. I., Bunkin, N. F., Churave, N. V., Kiseleva, O. A., Lobeyev, A. V., & Ninham, B. W. (1995). Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. Journal of Colloid and Interface Science, 173, 443–447.

    Article  CAS  Google Scholar 

  • Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74, 69–117.

    Article  CAS  Google Scholar 

  • Wagner, J. R. (2010). Multilayer flexible packaging (1st ed.). Burlington: Elsevier.

    Google Scholar 

  • Wong, E., Linton, R. H., & Gerrard, D. E. (1998). Reduction of Escherichia coli and Salmonella senftenberg on pork skin and pork muscle using ultraviolet light. Food Microbiology, 15(4), 415–423.

    Article  Google Scholar 

  • Yano, S., Murayama, M. (1980). Effect of photodegradation on dynamic mechanical properties of nylon 6. Journal of Applied Polymer Science, 25, 433–447.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Sablani.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11947-017-2008-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarek, A.R., Rasco, B.A. & Sablani, S.S. Ultraviolet-C Light Inactivation Kinetics of E. coli on Bologna Beef Packaged in Plastic Films. Food Bioprocess Technol 8, 1267–1280 (2015). https://doi.org/10.1007/s11947-015-1487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1487-y

Keywords

Navigation