Skip to main content
Log in

Understanding how Age-Related Decline in Testosterone Affects Male Sexual Behavior: Neurosteroids as the Missing Piece

  • Preclinical and Psychophysiology (F Guarraci and L Marson, Section Editors)
  • Published:
Current Sexual Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Age-related declines in male sexual behavior are often attributed to a well-documented decline in circulating androgens. Yet, several recent studies and metanalyses have suggested a weak relationship between circulating androgen levels and sexual behaviors, indicating that despite decreases in circulating androgens many men maintain moderate levels of sexual behavior. The lack of a strong relationship between circulating androgens and sexual dysfunction may be due to age-related changes in steroid signaling in the brain, which may be independent of circulating androgens. Androgen concentrations, synthesis, and signaling in the aging brain have been understudied. The purpose of this review is to briefly summarize our understanding of how age-related decreases in circulating androgens influence neural circuits that mediate sexual behavior and reward, and to highlight recent findings in our understanding of androgen receptors, neuroandrogens, and sexual function in healthy aged men.

Recent Findings

Age-related declines in circulating androgens weakly correlate with declines in sexual behavior, but androgen decline does not account for all the variance in sexual behavior observed among subjects. Evidence now suggests that neural nodes of the consummatory and appetitive sexual behavior circuits are capable of synthesizing androgens, independent of circulating levels of androgens. However, there remains a lack of controlled studies on neural markers of androgen signaling in healthy aged men. This ability to locally regulate androgens may compensate for lower circulating androgen levels to maintain proper sexual functioning.

Summary

To better understand age-related declines in sexual behavior, compensatory androgen synthesis in the brains of aged males should be explored further in humans and animal models. A greater understanding of these mechanisms can inform the development of pharmacotherapies that can be used to ameliorate age-related sexual dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

3β-HSD:

3 Beta-hydroxysteroid dehydrogenase/isomerase

5αR:

5α-reductase

17β-HSD:

17 Beta-hydroxysteroid dehydrogenase

AE:

Androstenedione

AR:

Androgen receptor

BBB:

Blood-brain barrier

DHEA:

Dehydroepiandrosterone

DHEA-S:

Dehydroepiandrosterone sulfate

DHT:

Dihydrotestosterone

E2 :

17β-estradiol

LH:

Luteinizing hormone

NAc:

Nucleus accumbens

PFC:

Prefrontal cortex

PREG:

Pregnenolone

PREG-S:

Pregnenolone sulfate

T:

Testosterone

VTA:

Ventral tegmental area

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Karraker A, DeLamater J, Schwartz CR. Sexual frequency decline from midlife to later life. J Gerontol Ser B Psychol Sci Soc Sci. 2011;66B:502–12.

    Google Scholar 

  2. Zirkin BR, Tenover JL. Aging and declining testosterone: past, present, and hopes for the future. J Androl. 2012;33:1111–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumoto AM. Andropause: clinical implications of the decline in serum testosterone levels with aging in men. J Gerontol A Biol Sci Med Sci. 2002;57:M76–99.

    PubMed  Google Scholar 

  4. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26:833–76.

    CAS  PubMed  Google Scholar 

  5. Corona G, Isidori AM, Aversa A, Burnett AL, Maggi M. Endocrinologic control of men’s sexual desire and arousal/erection. J Sex Med. 2016;13:317–37.

    PubMed  Google Scholar 

  6. •• Millar AC, Lau ANC, Tomlinson G, Kraguljac A, Simel DL, Detsky AS, et al. Predicting low testosterone in aging men: a systematic review. Can Med Assoc J. 2016;188:E321–30. This systematic review helped establish that there is a weak relationship between a decline in circulating testosterone and decline in sexual behavior.

    Google Scholar 

  7. Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab. 2002;13:35–43.

    CAS  PubMed  Google Scholar 

  8. Tsutsui K, Ukena K, Takase M, Kohchi C, Lea RW. Neurosteroid biosynthesis in vertebrate brains. Comp Biochem Physiol - C Pharmacol Toxicol Endocrinol. 1999;124:121–9.

    CAS  PubMed  Google Scholar 

  9. Giatti S, Garcia-Segura LM, Barreto GE, Melcangi RC (in press) Neuroactive steroids, neurosteroidogenesis and sex. Prog Neurobiol 0–1.

  10. • Tobiansky DJ, Wallin-Miller KG, Floresco SB, Wood RI, Soma KK. Androgen regulation of the mesocorticolimbic system and executive function. Front Endocrinol (Lausanne). 2018;9:279. This review gives an overview of how endogenous and exogenous androgens influence the mesocorticolimbic system. The majority of the literature reviewed focuses on preclinical studies.

    Google Scholar 

  11. Diotel N, Charlier TD, Lefebvre d’Hellencourt C, Couret D, Trudeau VL, Nicolau JC, et al. Steroid transport, local synthesis, and signaling within the brain: roles in neurogenesis, neuroprotection, and sexual behaviors. Front Neurosci. 2018;12:1–27.

    Google Scholar 

  12. Labrie F. DHEA, important source of sex steroids in men and even more in women. Prog Brain Res. 2010;182:97–148.

    CAS  PubMed  Google Scholar 

  13. Grube M, Hagen P, Jedlitschky G. Neurosteroid transport in the brain: role of ABC and SLC transporters. Front Pharmacol. 2018;9:1–9.

    Google Scholar 

  14. Qaiser MZ, Dolman DEM, Begley DJ, Abbott NJ, Cazacu-Davidescu M, Corol DI, et al. Uptake and metabolism of sulphated steroids by the blood–brain barrier in the adult male rat. J Neurochem. 2017;142:672–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pardridge WM, Moeller TL, Mietus LJ, Oldendorf WH. Blood-brain barrier transport and brain sequestration of steroid hormones. Am J Phys. 1980;239:E96–102.

    CAS  Google Scholar 

  16. Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest. 1979;64:145–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tobiansky DJ, Korol AM, Ma C, Hamden JE, Jalabert C, Tomm RJ, et al. Testosterone and corticosterone in the mesocorticolimbic system of male rats: effects of gonadectomy and caloric restriction. Endocrinology. 2018;159:450–64.

    PubMed  Google Scholar 

  18. Weill-Engerer S, David J-P, Sazdovitch V, Liere P, Eychenne B, Pianos A, et al. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab. 2002;87:5138–43.

    CAS  PubMed  Google Scholar 

  19. Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153:4111–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Corpéchot C, Baulieu É-É, Robel P. Testosterone, dihydrotestosterone and androstanediols in plasma, testes and prostates of rats during development. Acta Endocrinol. 1981;96:127–35.

    PubMed  Google Scholar 

  21. Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R, et al. Pregnenolone and its sulfate ester in the rat brain. Brain Res. 1983;270:119–25.

    PubMed  Google Scholar 

  22. Robel P, Bourreau E, Corpéchot C, Dang DC, Halberg F, Clarke C, et al. Neuro-steroids: 3β-hydroxy-δ5-derivatives in rat and monkey brain. J Steroid Biochem. 1987;27:649–55.

    CAS  PubMed  Google Scholar 

  23. Liere P, Pianos A, Eychenne B, Cambourg A, Bodin K, Griffiths W, et al. Analysis of pregnenolone and dehydroepiandrosterone in rodent brain: cholesterol autoxidation is the key. J Lipid Res. 2009;50:2430–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Role of sex hormones on brain mitochondrial function, with special reference to aging and neurodegenerative diseases. Front Aging Neurosci. 2017;9:1–18. This review is one of the very few papers that discuss neurosteroids and aging.

    Google Scholar 

  25. Schumacher M, Guennoun R, Mattern C, Oudinet J-P, Labombarda F, De Nicola AF, et al. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids. 2015;103:42–57.

    CAS  PubMed  Google Scholar 

  26. Tsutsui K. Neurosteroid biosynthesis and function in the brain of domestic birds. Front Endocrinol (Lausanne). 2011;2:37.

    Google Scholar 

  27. • Baulieu É-É. Steroids and brain, a rising bio-medical domain: a perspective. Front Endocrinol (Lausanne). 2018;9:316. In this mini-review, Baulieu describes several neurosteroids and steroidogenic enzyme inhibitors that are currently in clinical trials for treatment of psychological disorders.

    Google Scholar 

  28. • do Rego JL, Vaudry H. Comparative aspects of neurosteroidogenesis: from fish to mammals. Gen Comp Endocrinol. 2016;227:120–9. This review provides evidence that steroidogenic enzymes and local steroid synthesis are evolutionarily conserved and lends support to using animal models to study neurosteroidogenesis.

    PubMed  Google Scholar 

  29. Ubuka T, Tsutsui K. Review: neuroestrogen regulation of socio-sexual behavior of males. Front Neurosci. 2014;8:323.

    PubMed  PubMed Central  Google Scholar 

  30. Vaudry H, Do RJL, Burel D, et al. Neurosteroid biosynthesis in the brain of amphibians. Front Endocrinol (Lausanne). 2011;2:1–9.

    Google Scholar 

  31. Di Cristo C, Di Donato P, Palumbo A, D’Ischia M, Paolucci M, Di Cosmo A. Steroidogenesis in the brain of Sepia officinalis and Octopus vulgaris. Front Biosci. 2010:673–83.

  32. Chen CF, Wen HS, Wang ZP, He F, Zhang JR, Chen XY, et al. Cloning and expression of P450c17-I (17α-hydroxylase/17,20-lyase) in brain and ovary during gonad development in Cynoglossus semilaevis. Fish Physiol Biochem. 2010;36:1001–12.

    CAS  PubMed  Google Scholar 

  33. •• Sorwell KG, Renner L, Weiss AR, Neuringer M, Kohama SG, Urbanski HF. Cognition in aged rhesus monkeys: effect of DHEA and correlation with steroidogenic gene expression. Genes Brain Behav. 2017;16:361–368. This paper is the first to correlate a neurosteroid with steroidogenic enzymes in the brain (prefrontal cortex) after the subject’s behavior was assessed.

  34. Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol. 2001;145:669–79.

    CAS  PubMed  Google Scholar 

  35. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vallée M, Mayo W, Darnaudéry M, Corpéchot C, Young J, Koehl M, et al. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci. 1997;94:14865–70.

    PubMed  Google Scholar 

  37. Weill-Engerer S, David JP, Sazdovitch V, Liere P, Schumacher M, Delacourte A, et al. In vitro metabolism of dehydroepiandrosterone (DHEA) to 7α-hydroxy-DHEA and Δ5-androstene-3β,17β-diol in specific regions of the aging brain from Alzheimer’s and non-demented patients. Brain Res. 2003;969:117–25.

    CAS  PubMed  Google Scholar 

  38. Hojo Y, Kawato S. Neurosteroids in adult hippocampus of male and female rodents: biosynthesis and actions of sex steroids. Front Endocrinol (Lausanne). 2018;9:1–8.

    Google Scholar 

  39. Hojo Y, Hattori T-A, Enami T, Furukawa A, Suzuki K, Ishii HT, et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A. 2004;101:865–70.

    CAS  PubMed  Google Scholar 

  40. Jenkins JS, Hall CJ. Metabolism of [14C]testosterone by human foetal and adult brain tissue. J Endocrinol. 1977;74:425–9.

    CAS  PubMed  Google Scholar 

  41. Ahmad AE, Bruha M, Welliver C. Age-related testosterone decline: whom do we treat and why? Curr Sex Heal Reports. 2016;8:97–105.

    Google Scholar 

  42. Chen H, Ge R-S, Zirkin BR. Leydig cells: from stem cells to ageing. Mol Cell Endocrinol. 2009;306:9–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Luo L, Liu J, Brown T, Zirkin BR. Aging and caloric restriction: effects on Leydig cell steroidogenesis. Exp Gerontol. 2005;40:498–505.

    CAS  PubMed  Google Scholar 

  44. Kinoshita Y, Higashi Y, Winters SJ, Oshima H, Troen P. An analysis of the age-related decline in testicular steroidogenesis in the rat. Biol Reprod. 1985;32:309–14.

    CAS  PubMed  Google Scholar 

  45. Labrie F, Bélanger A, Cusan L, Gomez JL, Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab. 1997;82:2396–402.

    CAS  PubMed  Google Scholar 

  46. Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, Morley PM, Stauber PM, Vellas B, Baumgartner RN, Garry PJ (1997) Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 46:410–413.

    CAS  PubMed  Google Scholar 

  47. Baulieu É-É, Thomas G, Legrain S, Lahlou N, Roger M, Debuire B, et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge study to a sociobiomedical issue. Proc Natl Acad Sci. 2000;97:4279–84.

    CAS  PubMed  Google Scholar 

  48. Elmlinger MW, Kühnel W, Wormstall H, Döller PC. Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clin Lab. 2005;51:625–632.

  49. Mazat L, Lafont S, Berr C, Debuire B, Tessier J-F, Dartigues J-F, et al. Prospective measurements of dehydroepiandrosterone sulfate in a cohort of elderly subjects: relationship to gender, subjective health, smoking habits, and 10-year mortality. Proc Natl Acad Sci. 2001;98:8145–50.

    CAS  PubMed  Google Scholar 

  50. •• Resnick SM, Matsumoto AM, Stephens-Shields AJ, et al. Testosterone treatment and cognitive function in older men with low testosterone and age-associated memory impairment. JAMA. 2017;317:717–27. This clinical trial found that testosterone replacement in aged males does not improve cognitive function or memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. • Snyder PJ, Bhasin S, Cunningham GR, et al. Lessons from the Testosterone Trials. Endocr Rev. 2018;39:369–386. This paper reviews findings from the recently published Testosterone Trials. The summary highlights the effects of testosterone on sexual function and depression in aged males.

    PubMed  Google Scholar 

  52. Yau JLW, Rasmuson S, Andrew R, Graham M, Noble J, Olsson T, et al. Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer’s disease. Neuroscience. 2003;121:307–14.

    CAS  PubMed  Google Scholar 

  53. Marx CE, Trost WT, Shampine LJ, Stevens RD, Hulette CM, Steffens DC, et al. The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer’s disease. Biol Psychiatry. 2006;60:1287–94.

    CAS  PubMed  Google Scholar 

  54. Kim S-B, Hill M, Kwak Y-T, Hampl R, Jo D-H, Morfin R. Neurosteroids: cerebrospinal fluid levels for Alzheimer’s disease and vascular dementia diagnostics. J Clin Endocrinol Metab. 2003;88:5199–206.

    CAS  PubMed  Google Scholar 

  55. Naylor JC, Hulette CM, Steffens DC, Shampine LJ, Ervin JF, Payne VM, et al. Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer’s disease, and related to neuropathological disease stage. J Clin Endocrinol Metab. 2008;93:3173–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wozniak A, Hutchison RE, Morris CM, Hutchison JB. Neuroblastoma and Alzheimer’s disease brain cells contain aromatase activity. Steroids. 1998;63:263–7.

    CAS  PubMed  Google Scholar 

  57. Steckelbroeck S, Stoffel-Wagner B, Reichelt R, Schramm J, Bidlingmaier F, Siekmann L, et al. Characterization of 17beta-hydroxysteroid dehydrogenase activity in brain tissue: testosterone formation in the human temporal lobe. J Neuroendocrinol. 1999;11:457–64.

    CAS  PubMed  Google Scholar 

  58. Steckelbroeck S, Watzka M, Lütjohann D, Makiola P, Nassen A, Hans VHJ, et al. Characterization of the dehydroepiandrosterone (DHEA) metabolism via oxysterol 7alpha-hydroxylase and 17-ketosteroid reductase activity in the human brain. J Neurochem. 2002;83:713–26.

    CAS  PubMed  Google Scholar 

  59. Steckelbroeck S, Watzka M, Stoffel-Wagner B, Hans VH, Redel L, Clusmann H, et al. Expression of the 17beta-hydroxysteroid dehydrogenase type 5 mRNA in the human brain. Mol Cell Endocrinol. 2001;171:165–8.

    CAS  PubMed  Google Scholar 

  60. Puy L, MacLusky NJ, Becker L, Karsan N, Trachtenberg J, Brown TJ. Immunocytochemical detection of androgen receptor in human temporal cortex: characterization and application of polyclonal androgen receptor antibodies in frozen and paraffin-embedded tissues. J Steroid Biochem Mol Biol. 1995;55:197–209.

    CAS  PubMed  Google Scholar 

  61. Sarrieau A, Mitchell JB, Lal S, Olivier A, Quirion R, Meaney MJ. Androgen binding sites in human temporal cortex. Neuroendocrinology. 1990;51:713–6.

    CAS  PubMed  Google Scholar 

  62. •• Kärkkäinen O, Häkkinen MR, Auriola S, Kautiainen H, Tiihonen J, Storvik M. Increased steroid hormone dehydroepiandrosterone and pregnenolone levels in post-mortem brain samples of alcoholics. Alcohol. 2016;52:63–70. This paper is one of only a few reports of neurosteroids in seperate brain regions of humans.

    PubMed  Google Scholar 

  63. Ahboucha S, Pomier-Layrargues G, Mamer O, Butterworth RF. Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem Int. 2006;49:372–8.

    CAS  PubMed  Google Scholar 

  64. •• Youssef NA, Bradford DW, Kilts JD, et al. Exploratory investigation of biomarker candidates for suicide in schizophrenia and bipolar disorder. Crisis. 2015;36:46–54. This paper is one of only a few reports of neurosteroids in seperate brain regions of humans.

    PubMed  Google Scholar 

  65. Stan AD, Ghose S, Gao X-M, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, et al. Human postmortem tissue: what quality markers matter? Brain Res. 2006;1123:1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. • Basaria S, Jasuja R, Huang G, et al. Characteristics of men who report persistent sexual symptoms after finasteride use for hair loss. J Clin Endocrinol Metab. 2016;101:4669–80. This clinical study examined the possible causes of “post-finasteride syndrome,” and found that individuals did not exhibit androgen deficiency, a decrease in peripheral androgens, or inhibition of skin 5αR. This suggests that the syndrome might be due to changes in androgen signaling and/or synthesis in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Traish AM. The post-finasteride syndrome: clinical manifestation of drug-induced epigenetics due to endocrine disruption. Curr Sex Heal Reports. 2018;10:88–103.

    Google Scholar 

  68. Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJM, Garcia-Segura LM, et al. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol. 2003;71:3–29.

    CAS  PubMed  Google Scholar 

  69. Pfaus JG. Frank a. beach award. Homologies of animal and human sexual behaviors. Horm Behav. 1996;30:187–200.

    CAS  PubMed  Google Scholar 

  70. Balthazart J, Ball GF. Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol. 2007;28:161–78.

    PubMed  PubMed Central  Google Scholar 

  71. Veening JG, Coolen LM. Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol Biochem Behav. 2014;121:170–83.

    CAS  PubMed  Google Scholar 

  72. Baird AD, Wilson SJ, Bladin PF, Saling MM, Reutens DC. Neurological control of human sexual behaviour: insights from lesion studies. J Neurol Neurosurg Psychiatry. 2007;78:1042–9.

    PubMed  Google Scholar 

  73. Handa RJ, McGivern RF (2002) Androgens and brain function: behavioral perspectives. In: Chang C (ed) Androg. Androg. Recept. Mech. Funct. Clin. Appl., 1st ed. Kluwer Academic Publishers, Norwell, pp 325–344.

    Google Scholar 

  74. Hull EM, Dominguez JM. Sexual behavior in male rodents. Horm Behav. 2007;52:45–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kruijver FPM, Fernández-Guasti A, Fodor M, Kraan EM, Swaab DF. Sex differences in androgen receptors of the human mamillary bodies are related to endocrine status rather than to sexual orientation or transsexuality. J Clin Endocrinol Metab. 2001;86:818–27.

    CAS  PubMed  Google Scholar 

  76. Fernández-Guasti A, Kruijver FPM, Fodor M, Swaab DF. Sex differences in the distribution of androgen receptors in the human hypothalamus. J Comp Neurol. 2000;425:422–35.

    PubMed  Google Scholar 

  77. Simerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294:76–95.

    CAS  PubMed  Google Scholar 

  78. Abdelgadir SE, Roselli CE, Choate JV, Resko JA. Androgen receptor messenger ribonucleic acid in brains and pituitaries of male rhesus monkeys: studies on distribution, hormonal control, and relationship to luteinizing hormone secretion. Biol Reprod. 1999;60:1251–6.

    CAS  PubMed  Google Scholar 

  79. Kumar RC, Thakur MK. Androgen receptor mRNA is inversely regulated by testosterone and estradiol in adult mouse brain. Neurobiol Aging. 2004;25:925–33.

    CAS  PubMed  Google Scholar 

  80. Lu S-F, Mo Q, Hu S, Garippa C, Simon NG. Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity. J Neurobiol. 2003;57:163–71.

    CAS  PubMed  Google Scholar 

  81. Sripada RK, Welsh RC, Marx CE, Liberzon I. The neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting-state amygdala connectivity. Hum Brain Mapp. 2014;35:3249–61.

    PubMed  Google Scholar 

  82. Tsitouras PD, Martin CE, Harman SM. Relationship of serum testosterone to sexual activity in healthy elderly men. J Gerontol. 1982;37:288–93.

    CAS  PubMed  Google Scholar 

  83. Bortz WM, Wallace DH, Wiley D. Sexual function in 1,202 aging males: differentiating aspects. J Gerontol - Ser A Biol Sci Med Sci. 1999;54:237–41.

    Google Scholar 

  84. •• Cunningham GR, Stephens-Shields AJ, Rosen RC, et al. Testosterone treatment and sexual function in older men with low testosterone levels. J Clin Endocrinol Metab. 2016;101:3096–104. This is a placebo-controlled clinical trial with a large sample size and part of the Testosterone Trials. Exogenous testosterone was associated with a moderate increase in sexual activity and libido, but did not affect erectile function.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Anderson DJ. Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry. 2012;71:1081–9.

    PubMed  Google Scholar 

  86. McGinnis MY, Yu WH. Age-related changes in androgen receptor levels in cranial nerve nuclei of male rats. Brain Res Bull. 1995;36:581–5.

    CAS  PubMed  Google Scholar 

  87. Nutsch VL, Will RG, Hattori T, Tobiansky DJ, Dominguez JM. Sexual experience influences mating-induced activity in nitric oxide synthase-containing neurons in the medial preoptic area. Neurosci Lett. 2014;579:92–6.

    CAS  PubMed  Google Scholar 

  88. • Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, et al. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol. 2017;442:153–64. This paper focuses on age-related androgen changes in regions of the hypothalamus associated with both consummatory and appetitive behavior. It is one of the few reports of age-related changes in steroidogenic enzymes in the brains of mammals.

    CAS  PubMed  Google Scholar 

  89. •• Munetomo A, Hojo Y, Higo S, Kato A, Yoshida K, Shirasawa T, et al. Aging-induced changes in sex-steroidogenic enzymes and sex-steroid receptors in the cortex, hypothalamus and cerebellum. J Physiol Sci. 2015;65:253–63. This study is the first to look at changes in steroidogenic enzymes in discrete brain regions throughout aging in mammals.

    CAS  PubMed  Google Scholar 

  90. Wu D, Lin G, Gore AC. Age-related changes in hypothalamic androgen receptor and estrogen receptor alpha in male rats. J Comp Neurol. 2009;512:688–701.

    PubMed  PubMed Central  Google Scholar 

  91. •• Corona G, Tirabassi G, Santi D, Maseroli E, Gacci M, Dicuio M, et al. Sexual dysfunction in subjects treated with inhibitors of 5α-reductase for benign prostatic hyperplasia: a comprehensive review and meta-analysis. Andrology. 2017;5:671–8. This metanalysis of clinical 5αR inhibitor trials lends support to the hypothesis of “post-finasteride syndrome”.

    CAS  PubMed  Google Scholar 

  92. Tobiansky DJ, Roma PG, Hattori T, Will RG, Nutsch VL, Dominguez JM. The medial preoptic area modulates cocaine-induced activity in female rats. Behav Neurosci. 2013;127:293–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Guarraci FA. “Sex, drugs and the brain”: the interaction between drugs of abuse and sexual behavior in the female rat. Horm Behav. 2010;58:138–48.

    CAS  PubMed  Google Scholar 

  94. Kringelbach ML, Berridge KC (2016) Neuroscience of reward, motivation, and drive. In: Kim S, Reeve J, Bong M (eds) Recent Dev. Neurosci. Res. Hum. Motiv. Emerald Group Publishing Limited, pp 23–35.

  95. Brett MA, Roberts LF, Johnson TW, Wassersug RJ. Eunuchs in contemporary society: expectations, consequences, and adjustments to castration (part II). J Sex Med. 2007;4:946–55.

    PubMed  Google Scholar 

  96. Mccullagh EP, Renshaw JF. The effects of castration in the adult male. J Am Med Assoc. 1934;103:1140–3.

    Google Scholar 

  97. Agis-Balboa RC, Guidotti A, Pinna G. 5α-reductase type I expression is downregulated in the prefrontal cortex/Brodmann’s area 9 (BA9) of depressed patients. Psychopharmacology. 2014;231:3569–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. •• Qi X-R, Luchetti S, Verwer RWH, Sluiter AA, Mason MRJ, Zhou J-N, Swaab DF. Alterations in the steroid biosynthetic pathways in the human prefrontal cortex in mood disorders: a postmortem study. Brain Pathol. 2018;28:536–47. This paper is one of only a few reports of neurosteroids in seperate brain regions of humans. It is the only study to look at group differences of Cyp17a1 in the brain of humans.

    PubMed  Google Scholar 

  99. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    CAS  PubMed  Google Scholar 

  100. Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017;8:14727.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kennedy SH, Dickens SE, Eisfeld BS, Bagby RM. Sexual dysfunction before antidepressant therapy in major depression. J Affect Disord. 1999;56:201–8.

    CAS  PubMed  Google Scholar 

  102. Derouesné C, Guigot J, Chermat V, Winchester N, Lacomblez L. Sexual behavioral changes in Alzheimer disease. Alzheimer Dis Assoc Disord. 1996;10:86–92.

    PubMed  Google Scholar 

  103. Schmidt PJ, Daly RC, Bloch M, Smith MJ, Danaceau MA, Simpson St. Clair L, et al. Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Arch Gen Psychiatry. 2005;62:154–62.

    CAS  PubMed  Google Scholar 

  104. Low KL, Tomm RJ, Ma CQ, Tobiansky DJ, Floresco SB, Soma KK Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. submitted.

  105. Frau R, Abbiati F, Bini V, Casti A, Caruso D, Devoto P, et al. Targeting neurosteroid synthesis as a therapy for schizophrenia-related alterations induced by early psychosocial stress. Schizophr Res. 2015;168:640–8.

    PubMed  PubMed Central  Google Scholar 

  106. Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005;10:79–104.

    CAS  PubMed  Google Scholar 

  107. Zárate S, Stevnsner T, Gredilla R. Role of estrogen and other sex hormones in brain aging. Neuroprotection and DNA repair. Front Aging Neurosci. 2017;9:1–22.

    Google Scholar 

  108. • Porcu P, Barron AM, Frye CA, Walf AA, Yang S-Y, He X-Y, et al. Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. J Neuroendocrinol. 2016;28:12351. This review provides a nice overview of neurosteroidogenesis and reviews potential pharmacotherapies stemming from basic research on neurosteroids.

    CAS  PubMed  Google Scholar 

  109. Doron R, Fridman L, Gispan-Herman I, Maayan R, Weizman A, Yadid G. DHEA, a neurosteroid, decreases cocaine self-administration and reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology. 2006;31:2231–6.

    CAS  PubMed  Google Scholar 

  110. De Nicola AF, Garay LI, Meyer M, Guennoun R, Sitruk-Ware R, Schumacher M, et al. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J Neuroendocrinol. 2018;30:e12502.

    Google Scholar 

  111. • Sato SM, Woolley CS. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. Elife. 2016;5:e12917. This is the first paper to report using steroidogenic enzyme inhibitors in vivo to ameliorate epilepsy in rats.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Desiree Seib and Mr. Jordan Hamden for helpful edits on previous versions of this manuscript. I would also like to thank Dr. Kiran Soma for financial support during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Tobiansky.

Ethics declarations

Conflict of Interest

The author declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Preclinical and Pscyhophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobiansky, D.J. Understanding how Age-Related Decline in Testosterone Affects Male Sexual Behavior: Neurosteroids as the Missing Piece. Curr Sex Health Rep 10, 305–314 (2018). https://doi.org/10.1007/s11930-018-0175-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11930-018-0175-0

Keywords

Navigation