Skip to main content
Log in

Understanding Sexual Partner Preference: from Biological Diversity to Psychiatric Disorders

  • Preclinical and Psychophysiology (F Guarraci and L Marson, Section Editors)
  • Published:
Current Sexual Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to provide current evidence on the biological and psychological mechanisms that underlie sexual partner preferences (SPP) in humans and animals.

Recent Findings

SPP depend mainly on prenatal (adaptive) organization of the brain, but can be drastically modified via learning under enhanced dopaminergic (DA) and oxytocinergic (OT) activity.

Summary

SPP can be categorized as in those directed towards partners who display indicators of biological fitness (IBF) or towards partners who do not show those indicators. The IBF function as unconditioned stimuli that presumably activate prenatally organized brain areas that mediate the salience of those stimuli. However, we discuss some evidence indicating that SPP not directed towards IBF (i.e., paraphilias) might be consequence of a learning process that occurs under enhanced DA or OT activity, resulting in new powerful learning with additional brain areas involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Seto MC. The puzzle of male chronophilias. Arch Sex Behav. 2017;46(1):3–22. https://doi.org/10.1007/s10508-016-0799-y. This study suggests that chronophilias might represent sexual orientations.

    Article  PubMed  Google Scholar 

  2. •• Bailey JM, Hsu KJ. Orienting basic research on chronophilias. Arch Sex Behav. 2017;46(1):23–6. https://doi.org/10.1007/s10508-016-0885-1. This study suggest that paraphilias might represent failure in attractions towards fertile partners.

    Article  PubMed  Google Scholar 

  3. Pfaus JG, Frank A. Beach award. Homologies of animal and human sexual behaviors. Horm Behav. 1996;30(3):187–200. https://doi.org/10.1006/hbeh.1996.0024.

    Article  PubMed  CAS  Google Scholar 

  4. Safron A, Barch B, Bailey JM, Gitelman DR, Parrish TB, Reber PJ. Neural correlates of sexual arousal in homosexual and heterosexual men. Behav Neurosci. 2007;121(2):237–48. https://doi.org/10.1037/0735-7044.121.2.237.

    Article  PubMed  Google Scholar 

  5. Cerny JA, Janssen E. Patterns of sexual arousal in homosexual, bisexual, and heterosexual men. Arch Sex Behav. 2011;40(4):687–97. https://doi.org/10.1007/s10508-011-9746-0.

    Article  PubMed  Google Scholar 

  6. Pfaus JG, Kippin TE, Coria-Avila GA, Gelez H, Afonso VM, Ismail N, et al. Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Arch Sex Behav. 2012;41(1):31–62. https://doi.org/10.1007/s10508-012-9935-5.

    Article  PubMed  Google Scholar 

  7. Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci. 1992;106(1):181–91.

    Article  PubMed  CAS  Google Scholar 

  8. Pfaus JG. Pathways of sexual desire. J Sex Med. 2009;6(6):1506–33. https://doi.org/10.1111/j.1743-6109.2009.01309.x.

    Article  PubMed  CAS  Google Scholar 

  9. Eleftheriou A, Bullock S, Graham CA, Stone N, Ingham R. Does attractiveness influence condom use intentions in heterosexual men? An experimental study. BMJ Open. 2016;6(6):e010883. https://doi.org/10.1136/bmjopen-2015-010883.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kenrick DT, Sadalla EK, Groth G, Trost MR. Evolution, traits, and the stages of human courtship: qualifying the parental investment model. J Pers. 1990;58(1):97–116.

    Article  PubMed  CAS  Google Scholar 

  11. Rolls ET. Sexual behaviour, reward, and brain function; sexual selection of behaviour. In: Rolls ET, editor. Emotion explained. Great Britain: Oxford University Press; 2005. p. 358–99.

    Chapter  Google Scholar 

  12. Dixson BJ, Dixson AF, Morgan B, Anderson MJ. Human physique and sexual attractiveness: sexual preferences of men and women in Bakossiland, Cameroon. Arch Sex Behav. 2007;36(3):369–75. https://doi.org/10.1007/s10508-006-9093-8.

    Article  PubMed  Google Scholar 

  13. Buss DM. Sex differences in human mate preferences: evolutionary hypotheses tested in 37 cultures. Behav Brain Sci. 1989;12:1–49.

    Article  Google Scholar 

  14. Penton-Voak IS, Perrett DI, Castles DL, Kobayashi T, Burt DM, Murray LK, et al. Menstrual cycle alters face preference. Nature. 1999;399(6738):741–2. https://doi.org/10.1038/21557.

    Article  PubMed  CAS  Google Scholar 

  15. Debat V. Symmetry is beauty—or is it? The rise and fall of fluctuating asymmetry. Med Sci (Paris). 2016;32(8–9):774–80. https://doi.org/10.1051/medsci/20163208028.

    Article  Google Scholar 

  16. Zaromatidis K, Carlo R, Racanello D. Sex, perceptions of attractiveness, and sensation seeking and ratings of the likelihood of having sexually transmitted diseases. Psychol Rep. 2004;94(2):633–6. https://doi.org/10.2466/pr0.94.2.633-636.

    Article  PubMed  Google Scholar 

  17. Hodges-Simeon CR, Gurven M, Puts DA, Gaulin SJ. Vocal fundamental and formant frequencies are honest signals of threat potential in peripubertal males. Behav Ecol. 2014;25(4):984–8. https://doi.org/10.1093/beheco/aru081.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Langlois JH, Kalakanis L, Rubenstein AJ, Larson A, Hallam M, Smoot M. Maxims or myths of beauty? A meta-analytic and theoretical review. Psychol Bull. 2000;126(3):390–423.

    Article  PubMed  CAS  Google Scholar 

  19. Singh D. Body shape and women’s attractiveness: the critical role of waist-to-hip ratio. Hum Nat. 1993;4(3):297–321. https://doi.org/10.1007/BF02692203.

    Article  PubMed  CAS  Google Scholar 

  20. Roberts SC, Havlicek J, Flegr J, Hruskova M, Little AC, Jones BC, et al. Female facial attractiveness increases during the fertile phase of the menstrual cycle. Proc Biol Sci. 2004;271(Suppl 5):S270–2. https://doi.org/10.1098/rsbl.2004.0174.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gildersleeve KA, Haselton MG, Larson CM, Pillsworth EG. Body odor attractiveness as a cue of impending ovulation in women: evidence from a study using hormone-confirmed ovulation. Horm Behav. 2012;61(2):157–66. https://doi.org/10.1016/j.yhbeh.2011.11.005.

    Article  PubMed  CAS  Google Scholar 

  22. Carrito ML, Santos IM, Alho L, Ferreira J, Soares SC, Bem-Haja P, et al. Do masculine men smell better? An association between skin color masculinity and female preferences for body odor. Chem Senses. 2017;42(3):269–75. https://doi.org/10.1093/chemse/bjx004.

    Article  PubMed  Google Scholar 

  23. •• Ramirez-Rodriguez R, Perusquia-Cabrera D, Díaz-Estrada VX, Herrera-Covarrubias D, Carrillo P, García L, et al. Conditioned sexual arousal towards infants in adult male rats: A model of learned pedophilia? In: Neuroscience Sf, editor. Annual Meeting of the Society For Neuroscience. Washington, DC: Society For Neuroscience; 2017. This study indicates that pedophilia can be developed after a conditioning process, specially if condingency occurs under the effects of D2-type enhanced activity.

    Google Scholar 

  24. Pandita-Gunawardena R. Paraphilic infantilism. A rare case of fetishistic behaviour. Br J Psychiatry. 1990;157:767–70.

    Article  PubMed  CAS  Google Scholar 

  25. •• Cibrian-Llanderal T, Rosas-Aguilar V, Triana-Del Rio R, Perez CA, Manzo J, Garcia LI, et al. Enhaced D2-type receptor activity facilitates the development of conditioned same-sex partner preference in male rats. Pharmacol Biochem Behav. 2012;102(2):177–83. https://doi.org/10.1016/j.pbb.2012.04.007. This study shows that same-sex preference can be learned after a process of conditioning, specially under the effects of D2-type activity.

    Article  PubMed  CAS  Google Scholar 

  26. •• Triana-Del Rio R, Tecamachaltzi-Silvaran MB, Diaz-Estrada VX, Herrera-Covarrubias D, Corona-Morales AA, Pfaus JG, et al. Conditioned same-sex partner preference in male rats is facilitated by oxytocin and dopamine: effect on sexually dimorphic brain nuclei. Behav Brain Res. 2015;283:69–77. https://doi.org/10.1016/j.bbr.2015.01.019. This study shows the effects of dopamine D2-type and oxitocin in the development of conditioned same-sex partner preference.

    Article  PubMed  CAS  Google Scholar 

  27. Kaul A, Duffy S. Gerontophilia—a case report. Med Sci Law. 1991;31(2):110–4. https://doi.org/10.1177/002580249103100204.

    Article  PubMed  CAS  Google Scholar 

  28. Hamby S, Finkelhor D, Turner H. Perpetrator and victim gender patterns for 21 forms of youth victimization in the National Survey of Children’s Exposure to Violence. Violence Vict. 2013;28(6):915–39.

    Article  PubMed  Google Scholar 

  29. Keaney TC. “Man-some”: a review of male facial aging and beauty. J Drugs Dermatol. 2017;16(6):91–3.

    PubMed  Google Scholar 

  30. Thornhill R, Gangestad SW. Facial attractiveness. Trends Cogn Sci. 1999;3(12):452–60.

    Article  PubMed  CAS  Google Scholar 

  31. Kerr KL, Rosero SJ, Doty RL. Odors and the perception of hygiene. Percept Mot Skills. 2005;100(1):135–41. https://doi.org/10.2466/pms.100.1.135-141.

    Article  PubMed  Google Scholar 

  32. Ferdenzi C, Schaal B, Roberts SC. Human axillary odor: are there side-related perceptual differences? Chem Senses. 2009;34(7):565–71. https://doi.org/10.1093/chemse/bjp037.

    Article  PubMed  Google Scholar 

  33. Wedekind C, Seebeck T, Bettens F, Paepke AJ. MHC-dependent mate preferences in humans. Proc Biol Sci. 1995;260(1359):245–9. https://doi.org/10.1098/rspb.1995.0087.

    Article  PubMed  CAS  Google Scholar 

  34. Heidekrueger PI, Szpalski C, Weichman K, Juran S, Ng R, Claussen C, et al. Lip attractiveness: a cross-cultural analysis. Aesthet Surg J. 2017;37(7):828–36. https://doi.org/10.1093/asj/sjw168.

    Article  PubMed  Google Scholar 

  35. • Coria-Avila GA, Manzo J, Garcia LI, Carrillo P, Miquel M, Pfaus JG. Neurobiology of social attachments. Neurosci Biobehav Rev. 2014;43:173–82. https://doi.org/10.1016/j.neubiorev.2014.04.004. This study summarizes the neurobiology of sexual partner preferences.

    Article  PubMed  Google Scholar 

  36. Pfaus JG, Damsma G, Nomikos GG, Wenkstern DG, Blaha CD, Phillips AG, et al. Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 1990;530(2):345–8.

    Article  PubMed  CAS  Google Scholar 

  37. Gingrich B, Liu Y, Cascio C, Wang Z, Insel TR. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav Neurosci. 2000;114(1):173–83.

    Article  PubMed  CAS  Google Scholar 

  38. Hull EM, Du J, Lorrain DS, Matuszewich L. Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull. 1997;44(4):327–33.

    Article  PubMed  CAS  Google Scholar 

  39. Newman R, Winans SS. An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens. J Comp Neurol. 1980;191(2):167–92. https://doi.org/10.1002/cne.901910203.

    Article  PubMed  CAS  Google Scholar 

  40. Fallon JH, Moore RY. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol. 1978;180(3):545–80. https://doi.org/10.1002/cne.901800310.

    Article  PubMed  CAS  Google Scholar 

  41. Bartels A, Zeki S. The neural basis of romantic love. Neuroreport. 2000;11(17):3829–34.

    Article  PubMed  CAS  Google Scholar 

  42. Cavanaugh BL, Lonstein JS. Social novelty increases tyrosine hydroxylase immunoreactivity in the extended olfactory amygdala of female prairie voles. Physiol Behav. 2010;100(4):381–6. https://doi.org/10.1016/j.physbeh.2010.03.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Meloy JR, Fisher H. Some thoughts on the neurobiology of stalking. J Forensic Sci. 2005;50(6):1472–80.

    Article  PubMed  Google Scholar 

  44. Fiorino DF, Coury A, Phillips AG. Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci. 1997;17(12):4849–55.

    Article  PubMed  CAS  Google Scholar 

  45. Young LJ, Lim MM, Gingrich B, Insel TR. Cellular mechanisms of social attachment. Horm Behav. 2001;40(2):133–8. https://doi.org/10.1006/hbeh.2001.1691.

    Article  PubMed  CAS  Google Scholar 

  46. Ferguson JN, Aldag JM, Insel TR, Young LJ. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci. 2001;21(20):8278–85.

    Article  PubMed  CAS  Google Scholar 

  47. Millan EZ, Kim HA, Janak PH. Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. Neuroscience. 2017;360:106–17. https://doi.org/10.1016/j.neuroscience.2017.07.044.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Kruger TH, Haake P, Chereath D, Knapp W, Janssen OE, Exton MS, et al. Specificity of the neuroendocrine response to orgasm during sexual arousal in men. J Endocrinol. 2003;177(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  49. Shipley MT, Ennis M. Functional organization of olfactory system. J Neurobiol. 1996;30(1):123–76. https://doi.org/10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO;2-N.

    Article  PubMed  CAS  Google Scholar 

  50. Bielsky IF, Young LJ. Oxytocin, vasopressin, and social recognition in mammals. Peptides. 2004;25(9):1565–74. https://doi.org/10.1016/j.peptides.2004.05.019.

    Article  PubMed  CAS  Google Scholar 

  51. Dhungel S, Masaoka M, Rai D, Kondo Y, Sakuma Y. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats. Neuroscience. 2011;199:225–34. https://doi.org/10.1016/j.neuroscience.2011.09.051.

    Article  PubMed  CAS  Google Scholar 

  52. Baum MJ, Everitt BJ. Increased expression of c-fos in the medial preoptic area after mating in male rats: role of afferent inputs from the medial amygdala and midbrain central tegmental field. Neuroscience. 1992;50(3):627–46.

    Article  PubMed  CAS  Google Scholar 

  53. Kelliher KR, Liu YC, Baum MJ, Sachs BD. Neuronal Fos activation in olfactory bulb and forebrain of male rats having erections in the presence of inaccessible estrous females. Neuroscience. 1999;92(3):1025–33.

    Article  PubMed  CAS  Google Scholar 

  54. Erskine MS, Hanrahan SB. Effects of paced mating on c-fos gene expression in the female rat brain. J Neuroendocrinol. 1997;9(12):903–12.

    Article  PubMed  CAS  Google Scholar 

  55. Coopersmith C, Gans SE, Rowe DW, Erskine MS. Infusions of lidocaine into the amygdala, but not the preoptic area, block pseudopregnancy in the rat. J Neuroendocrinol. 1996;8(4):259–66.

    Article  PubMed  CAS  Google Scholar 

  56. Gorski RA. Sexual differentiation of the brain. Hosp Pract. 1978;13(10):55–62.

    Article  PubMed  CAS  Google Scholar 

  57. Roselli CE, Reddy RC, Kaufman KR. The development of male-oriented behavior in rams. Front Neuroendocrinol. 2011;32(2):164–9. https://doi.org/10.1016/j.yfrne.2010.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Coria-Avila GA, Herrera-Covarrubias D, Paredes-Ramos P, Alvarez-Croda DM, Tecamachaltzi-Silvaran M, Rosales-Raya JB, et al. Dimorfismo cerebral y preferencia sexual en una rata pseudohermafrodita. e-Neurobiologia. 2014;5(9):090614.

    Google Scholar 

  59. Davis EC, Shryne JE, Gorski RA. A revised critical period for the sexual differentiation of the sexually dimorphic nucleus of the preoptic area in the rat. Neuroendocrinology. 1995;62(6):579–85.

    Article  PubMed  CAS  Google Scholar 

  60. Perakis A, Stylianopoulou F. Effects of a prenatal androgen peak on rat brain sexual differentiation. J Endocrinol. 1986;108(2):281–5.

    Article  PubMed  CAS  Google Scholar 

  61. Goto K, Koizumi K, Ohta Y, Hashi M, Fujii Y, Ohbo N, et al. Evaluation of general behavior, memory, learning performance, and brain sexual differentiation in F1 offspring males of rats treated with flutamide during late gestation. J Toxicol Sci. 2005;30(3):249–59.

    Article  PubMed  CAS  Google Scholar 

  62. Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 1978;148(2):333–46.

    Article  PubMed  CAS  Google Scholar 

  63. Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82.

    Article  PubMed  CAS  Google Scholar 

  64. Lephart ED, Call SB, Rhees RW, Jacobson NA, Weber KS, Bledsoe J, et al. Neuroendocrine regulation of sexually dimorphic brain structure and associated sexual behavior in male rats is genetically controlled. Biol Reprod. 2001;64(2):571–8.

    Article  PubMed  CAS  Google Scholar 

  65. Woodson JC, Balleine BW, Gorski RA. Sexual experience interacts with steroid exposure to shape the partner preferences of rats. Horm Behav. 2002;42(2):148–57.

    Article  PubMed  CAS  Google Scholar 

  66. Gorski RA. Sexual differentiation of the nervous system. In: Kandel ER, Jessell TM, editors. Principles of neural science; 2000. p. 1131–48.

    Google Scholar 

  67. Matsumoto A, Arai Y. Effect of androgen on sexual differentiation of synaptic organization in the hypothalamic arcuate nucleus: an ontogenetic study. Neuroendocrinology. 1981;33(3):166–9.

    Article  PubMed  CAS  Google Scholar 

  68. LeVay S. A difference in hypothalamic structure between heterosexual and homosexual men. Science. 1991;253(5023):1034–7.

    Article  PubMed  CAS  Google Scholar 

  69. Swaab DF, Gooren LJ, Hofman MA. Brain research, gender and sexual orientation. J Homosex. 1995;28(3–4):283–301.

    Article  PubMed  CAS  Google Scholar 

  70. Allen LS, Gorski RA. Sexual dimorphism of the anterior commissure and massa intermedia of the human brain. J Comp Neurol. 1991;312(1):97–104. https://doi.org/10.1002/cne.903120108.

    Article  PubMed  CAS  Google Scholar 

  71. Savic I, Berglund H, Lindstrom P. Brain response to putative pheromones in homosexual men. Proc Natl Acad Sci U S A. 2005;102(20):7356–61. https://doi.org/10.1073/pnas.0407998102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Paul T, Schiffer B, Zwarg T, Kruger TH, Karama S, Schedlowski M, et al. Brain response to visual sexual stimuli in heterosexual and homosexual males. Hum Brain Mapp. 2008;29(6):726–35. https://doi.org/10.1002/hbm.20435.

    Article  PubMed  Google Scholar 

  73. Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G. Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron. 2003;40(3):655–64.

    Article  PubMed  CAS  Google Scholar 

  74. Dressing H, Obergriesser T, Tost H, Kaumeier S, Ruf M, Braus DF. Homosexual pedophilia and functional networks—an fMRI case report and literature review. Fortschr Neurol Psychiatr. 2001;69(11):539–44. https://doi.org/10.1055/s-2001-18380.

    Article  PubMed  CAS  Google Scholar 

  75. Burns JM, Swerdlow RH. Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Arch Neurol. 2003;60(3):437–40.

    Article  PubMed  Google Scholar 

  76. Sartorius A, Ruf M, Kief C, Demirakca T, Bailer J, Ende G, et al. Abnormal amygdala activation profile in pedophilia. Eur Arch Psychiatry Clin Neurosci. 2008;258(5):271–7. https://doi.org/10.1007/s00406-008-0782-2.

    Article  PubMed  Google Scholar 

  77. • Schiffer B, Krueger T, Paul T, de Greiff A, Forsting M, Leygraf N, et al. Brain response to visual sexual stimuli in homosexual pedophiles. J Psychiatry Neurosci. 2008;33(1):23–33. This study shows the role of the cortex in pedophilia.

    PubMed  PubMed Central  Google Scholar 

  78. Aragona BJ, Liu Y, Curtis JT, Stephan FK, Wang Z. A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J Neurosci. 2003;23(8):3483–90.

    Article  PubMed  CAS  Google Scholar 

  79. Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, et al. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci. 2006;9(1):133–9. https://doi.org/10.1038/nn1613.

    Article  PubMed  CAS  Google Scholar 

  80. Wang Z, Aragona BJ. Neurochemical regulation of pair bonding in male prairie voles. Physiol Behav. 2004;83(2):319–28. https://doi.org/10.1016/j.physbeh.2004.08.024.

    Article  PubMed  CAS  Google Scholar 

  81. Wang Z, Yu G, Cascio C, Liu Y, Gingrich B, Insel TR. Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles (Microtus ochrogaster): a mechanism for pair bonding? Behav Neurosci. 1999;113(3):602–11.

    Article  PubMed  CAS  Google Scholar 

  82. •• Coria-Avila GA, Cibrian-Llanderal T, Diaz-Estrada VX, Garcia LI, Toledo-Cardenas R, Pfaus JG, et al. Brain activation associated to olfactory conditioned same-sex partner preference in male rats. Horm Behav. 2018; https://doi.org/10.1016/j.yhbeh.2018.02.005. This study shows the brain areas activated in male rats that developed a conditioned same-sex partner preference.

  83. • Diaz-Estrada VX, Tecamachaltzi-Silvaran M, Barradas-Moctezuma M, Herrera-Covarrubias D, Ismail N, Coria-Avila GA. Conditioned same-sex partner preference and testosterone levels in male rats. e-Neurobiologia. 2015;7(14):12012016. This study shows that conditioned same-sex partner preference does not modify serum testosterone.

    Google Scholar 

  84. Coria-Avila GA, Pfaus JG. Neuronal activation by stimuli that predict sexual reward in female rats. Neuroscience. 2007;148(3):623–32. https://doi.org/10.1016/j.neuroscience.2007.05.052.

    Article  PubMed  CAS  Google Scholar 

  85. Pfaus JG, Tse TL, Werk CM, Chanda ML, Leblonde A, Harbour VL, et al. Enhanced synaptic responses in the piriform cortex associated with sexual stimulation in the male rat. Neuroscience. 2009;164(4):1422–30. https://doi.org/10.1016/j.neuroscience.2009.09.060.

    Article  PubMed  CAS  Google Scholar 

  86. Robarts DW, Baum MJ. Ventromedial hypothalamic nucleus lesions disrupt olfactory mate recognition and receptivity in female ferrets. Horm Behav. 2007;51(1):104–13. https://doi.org/10.1016/j.yhbeh.2006.08.009.

    Article  PubMed  Google Scholar 

  87. •• Ramírez-Rodríguez R, Perusquía-Cabrera D, Herrera-Covarrubias D, García L, Manzo J, Coria-Avila GA. Excitación sexual condicionada hacia prepúberes en ratas macho adultas: ¿Un modelo de pedofilia aprendida? In: Fisiológicas SMDC, editor. LX Congreso Nacional de la Sociedad Mexicana de Ciencias Fisiológicas. Monterrey: Sociedad Mexicana de Ciencias Fisiológicas; 2017. This study shows that pedophilia can be learned, specially under the effects of D2-type enhanced activity.

    Google Scholar 

  88. •• Hsu C. Parkinson’s medication turned respected family man into “gay sex and gambling addict”. Medical Daily. 2012. http://www.medicaldaily.com/parkinsons-medication-turned-respected-family-man-gay-sex-and-gambling-addict-243707. Accessed 28/04/2015. This case report indicates that dopaminergic medicine use for Parkinson’s disease can change sexual preference.

Download references

Acknowledgements

The authors want to thank CONACYT of Mexico for the grant support (GACA-167773 and S-8806). In addition, we thank the reviewers who helped us improve enormously the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genaro A. Coria-Avila.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Preclinical and Psychophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coria-Avila, G.A., Herrera-Covarrubias, D., Hernández, M.E. et al. Understanding Sexual Partner Preference: from Biological Diversity to Psychiatric Disorders. Curr Sex Health Rep 10, 142–151 (2018). https://doi.org/10.1007/s11930-018-0152-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11930-018-0152-7

Keywords

Navigation