Skip to main content

Advertisement

Log in

Power and Pitfalls of the Genome-Wide Association Study Approach to Identify Genes for Alzheimer’s Disease

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Until recently, the search for genes contributing to Alzheimer’s disease (AD) had been slow and disappointing, with the notable exception of the APOE ε4 allele, which increases risk and reduces the age at onset of AD in a dose-dependent fashion. Findings from genome-wide association studies (GWAS) made up of fewer than several thousand cases and controls each have not been replicated. Efforts of several consortia—each assembling much larger datasets with sufficient power to detect loci conferring small changes in AD risk—have resulted in robust associations with many novel genes involved in multiple biological pathways. Complex data mining strategies are being used to identify additional members of these pathways and gene–gene interactions contributing to AD risk. Guided by GWAS results, next-generation sequencing and functional studies are under way with the hope of helping us better understand AD pathology and providing new drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, et al. A familial Alzheimer’s disease locus on chromosome 1. Science. 1995;269:970–3.

    Article  PubMed  CAS  Google Scholar 

  2. St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, et al. Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14. Nat Genet. 1992;2:330–4.

    Article  PubMed  CAS  Google Scholar 

  3. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science. 1992;258:668–71.

    Article  PubMed  CAS  Google Scholar 

  4. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science. 1987;235:880–4.

    Article  PubMed  CAS  Google Scholar 

  5. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376:775–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–60.

    Article  PubMed  CAS  Google Scholar 

  7. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349:704–6.

    Article  PubMed  CAS  Google Scholar 

  8. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–56.

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy JL, Farrer LA, Andreasen NC, Mayeux R, St George-Hyslop P. The genetics of adult-onset neuropsychiatric disease: complexities and conundra? Science. 2003;302:822–6.

    Article  PubMed  CAS  Google Scholar 

  10. Ertekin-Taner N. Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimers Res Ther. 2010;2:3.

    Article  PubMed  Google Scholar 

  11. Pericak-Vance MA, Bebout JL, Gaskell Jr PC, Yamaoka LH, Hung WY, Alberts MJ, et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet. 1991;48:1034–50.

    PubMed  CAS  Google Scholar 

  12. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39:17–23.

    Article  PubMed  CAS  Google Scholar 

  13. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39:168–77.

    Article  PubMed  CAS  Google Scholar 

  14. Elston RC. Linkage and association. Genet Epidemiol. 1998;15:565–76.

    Article  PubMed  CAS  Google Scholar 

  15. Lehmann DJ, Cortina-Borja M, Warden DR, Smith AD, Sleegers K, Prince JA, et al. Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. Am J Epidemiol. 2005;162:305–17.

    Article  PubMed  Google Scholar 

  16. Meng Y, Baldwin CT, Bowirrat A, Waraska K, Inzelberg R, Friedland RP, et al. Association of polymorphisms in the Angiotensin-converting enzyme gene with Alzheimer disease in an Israeli Arab community. Am J Hum Genet. 2006;78:871–7.

    Article  PubMed  CAS  Google Scholar 

  17. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A. 2008;105:1620–5.

    Article  PubMed  CAS  Google Scholar 

  18. Bonnefond A, Froguel P, Vaxillaire M. The emerging genetics of type 2 diabetes. Trends Mol Med. 2010;16:407–16.

    Article  PubMed  CAS  Google Scholar 

  19. Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst. 2008;100:962–6.

    Article  PubMed  CAS  Google Scholar 

  20. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16:865–73.

    Article  PubMed  CAS  Google Scholar 

  21. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008;83:623–32.

    Article  PubMed  CAS  Google Scholar 

  22. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68:613–8.

    Article  PubMed  CAS  Google Scholar 

  23. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 2008;65:45–53.

    Article  PubMed  Google Scholar 

  24. Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer's disease using DNA pooling. BMC Med Genomics. 2008;1:44.

    Article  PubMed  Google Scholar 

  25. Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP, et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nat Genet. 2009;41:192–8.

    Article  PubMed  CAS  Google Scholar 

  26. Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR, Haines JL, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet. 2009;84:35–43.

    Article  PubMed  CAS  Google Scholar 

  27. Poduslo SE, Huang R, Huang J, Smith S. Genome screen of late-onset Alzheimer's extended pedigrees identifies TRPC4AP by haplotype analysis. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:50–5.

    Article  PubMed  CAS  Google Scholar 

  28. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron. 2007;54:713–20.

    Article  PubMed  CAS  Google Scholar 

  29. Sherva R, Baldwin CT, Inzelberg R, Vardarajan B, Cupples LA, Lunetta K, et al. Identification of novel candidate genes for Alzheimer’s disease by autozygosity mapping using genome wide SNP data from an Israeli-Arab community. J Alzheimers Dis (2010), (Epub ahead of print) PMID: 21098978.

  30. Kang DE, Yoon IS, Repetto E, Busse T, Yermian N, Ie L, et al. Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors. Selectivity of PS2 in platelet-derived growth factor signaling. J Biol Chem. 2005;280:31537–47.

    Article  PubMed  CAS  Google Scholar 

  31. Liang WS, Chen K, Lee W, Sidhar K, Corneveaux JJ, Allen AN, et al. Association between GAB2 haplotype and higher glucose metabolism in Alzheimer’s disease-affected brain regions in cognitively normal APOEepsilon4 carriers. Neuroimage (2010).

  32. Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH, Konidari I, et al. Dementia revealed: novel chromosome 6 locus for late-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities. PLoS Genet. 2010;6:e1001130.

    Article  PubMed  Google Scholar 

  33. Bowirrat A, Friedland RP, Chapman J, Korczyn AD. The very high prevalence of AD in an Arab population is not explained by APOE epsilon4 allele frequency. Neurology. 2000;55:731.

    PubMed  CAS  Google Scholar 

  34. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.

    Article  PubMed  Google Scholar 

  35. • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41:1088–93. This is one of two papers published back to back reporting results from a GWAS of AD in a very large sample composed of datasets from multiple research teams. Genome-wide significant results were obtained for variants in two novel genes whose role in the disorder would not have been predicted from their known functions. This paper demonstrates the importance of having a dataset exceeding 10,000 subjects to detect association with genes conferring a small effect on disease risk.

    Article  PubMed  CAS  Google Scholar 

  36. • Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9. This is the second of two back-to-back papers reporting results from a GWAS of AD in a very large sample composed of datasets from a second consortium of AD genetics researchers. Genome-wide significant results were obtained for variants in two novel genes, one of which (PICALM) was also identified in an independent study.

    Article  PubMed  CAS  Google Scholar 

  37. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303:1832–40.

    Article  PubMed  CAS  Google Scholar 

  38. Jun G, Naj AC, Beecham GW, Wang LS, Buros J, Gallins PJ, et al. Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol (2010), (Epub ahead of print) PMID: 20697030.

  39. Huang Y. Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol Med. 2010;16:287–94.

    Article  PubMed  CAS  Google Scholar 

  40. Danik M, Chabot JG, Hassan-Gonzalez D, Suh M, Quirion R. Localization of sulfated glycoprotein-2/clusterin mRNA in the rat brain by in situ hybridization. J Comp Neurol. 1993;334:209–27.

    Article  PubMed  CAS  Google Scholar 

  41. Wong P, Pineault J, Lakins J, Taillefer D, Leger J, Wang C, et al. Genomic organization and expression of the rat TRPM-2 (clusterin) gene, a gene implicated in apoptosis. J Biol Chem. 1993;268:5021–31.

    PubMed  CAS  Google Scholar 

  42. May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron. 1990;5:831–9.

    Article  PubMed  CAS  Google Scholar 

  43. Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J. Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech. 2000;50:305–15.

    Article  PubMed  CAS  Google Scholar 

  44. Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci U S A. 2002;99:10837–42.

    Article  PubMed  CAS  Google Scholar 

  45. Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, et al. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron. 2000;27:33–44.

    Article  PubMed  CAS  Google Scholar 

  46. Sanada K, Gupta A, Tsai LH. Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron. 2004;42:197–211.

    Article  PubMed  CAS  Google Scholar 

  47. Kelly BL, Ferreira A. Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience. 2007;147:60–70.

    Article  PubMed  CAS  Google Scholar 

  48. Lambert JC, Grenier-Boley B, Chouraki V, Heath S, Zelenika D, Fievet N, et al. Implication of the immune system in Alzheimer's disease: evidence from genome-wide pathway analysis. J Alzheimers Dis. 2010;20:1107–18.

    PubMed  CAS  Google Scholar 

  49. Hong MG, Alexeyenko A, Lambert JC, Amouyel P, Prince JA. Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J Hum Genet (2010).

  50. Jiang X, Barmada MM, Visweswaran S. Identifying genetic interactions in genome-wide data using Bayesian networks. Genet Epidemiol. 2010;34:575–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants R01-AG025259, R01-AG17173, R01-AG33193, U01-AG032984, and P30-AG13846 and a grant from an anonymous private foundation.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay A. Farrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherva, R., Farrer, L.A. Power and Pitfalls of the Genome-Wide Association Study Approach to Identify Genes for Alzheimer’s Disease. Curr Psychiatry Rep 13, 138–146 (2011). https://doi.org/10.1007/s11920-011-0184-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-011-0184-4

Keywords

Navigation