Skip to main content
Log in

Genetically mediated brain abnormalities in schizophrenia

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Schizophrenia is a highly heritable, neurobehavioral disorder; however, the mode of inheritance is complex, and linkage findings have been difficult to replicate. Some consistent linkage findings have emerged on chromosomes 1, 6, 8, 11, 13, 15, and 22. New methods are being developed for candidate gene identification, including the use of neurobiologic phenotypes observed in relatives of persons with schizophrenia. Neuroimaging studies of relatives implicate abnormal hippocampal structure and inefficient prefrontal network functioning, probably representing mild variants of the abnormalities observed in schizophrenia. These characteristics may represent stable markers of vulnerability to schizophrenia, because they are not confounded by effects of antipsychotic drugs or psychosis. Recent studies provide evidence for a small role of the catechol-O-methyltransferase gene on 22q, and the serotonin receptor transporter gene on 17q11–q12 in the development of schizophrenia. Linking genes and brain regions or networks is an important step in identification of the pathophysiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Tsuang MT, Stone WS, Faraone SV: Schizophrenia: a review of genetic studies. Harv Rev Psychiatry 1999, 7:185–207.

    Article  PubMed  CAS  Google Scholar 

  2. Karayiorgou M, Gogos JA: A turning point in schizophrenia genetics. Neuron 1997, 19:967–979.

    Article  PubMed  CAS  Google Scholar 

  3. Brzustowicz LM, Hodgkinson KA, Chow EW, et al.: Location of major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000, 288:678–682.

    Article  PubMed  CAS  Google Scholar 

  4. Levinson DF, Holmans P, Straub RE, et al.: Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Med Genet 2000, 67:652–663.

    CAS  Google Scholar 

  5. Gurling HM, Kalsi G, Brynjolfson J, et al.: Genomwide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Med Genet 2001, 68:661–673.

    CAS  Google Scholar 

  6. Blouin JL, Dombrowski BA, Nath SK, et al.: Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998, 20:70–73.

    Article  PubMed  CAS  Google Scholar 

  7. Freedman R, Leonard S, Gault JM, et al.: Linkage dysequilibrium for schizophrenia at the chromosome 15q13–14 locus of the alpha7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am J Med Genet 2001, 105:20–22. A candidate gene for schizophrenia, the alpha-7-acetylcholine receptor subunit gene (CHRNA7), was identified from studies of the P50 auditory evoked potential inhibitory gating abnormality observed in persons with schizophrenia and their first-degree relatives. Significant linkage of schizophrenia to a marker within one megabase of the CHRNA7 gene was demonstrated in parent-child triads from the National Institute of Mental Health Schizophrenia Genetics Initiative families and, in addition, sets of families. Results support this region on chromosome 15q13–14 in the genetic transmission of schizophrenia. This finding is especially interesting given that the sensory gating function (reflected in the P50) is thought to be mediated by the hippocampus, found in structural and functional MRI studies to be significantly smaller in persons with schizophrenia and their relatives.

    Article  PubMed  CAS  Google Scholar 

  8. Schwab SG, Hallmayer J, Albus M, et al.: A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry 2000, 5:638–649.

    Article  PubMed  CAS  Google Scholar 

  9. Moises HW, Yang L, Kristbjarnarson H, et al.: Potential linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22. Am J Med Genet 1995, 60:465–467.

    Article  PubMed  CAS  Google Scholar 

  10. Faraone SV, Matise C, Svrakic D, et al.: Genome scan of European-American schizophrenia pedigree: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998, 81:290–295.

    Article  PubMed  CAS  Google Scholar 

  11. Nurnberger JI, Foroud T: Genetics of bipolar disorder. Curr Psychiatry Rep 2000, 2:147–157.

    PubMed  Google Scholar 

  12. Egan MF, Goldman D, Weinberger DR: The human genome: mutations. Am J Psychiatry 2002, 159:12–13.

    Article  PubMed  Google Scholar 

  13. Lenzenweger MF: Psychometric high-risk paradigm, perceptual aberrations, and schizotypy: an update. Schizophr Bull 1994, 20:121–136.

    PubMed  CAS  Google Scholar 

  14. Levy DL, Holzman PS, Matthysse S, Mendell NR: Eye tracking and schizophrenia: a selective review. Schizophr Bull 1994, 20:47–62.

    PubMed  CAS  Google Scholar 

  15. Cornblatt BA, Kelip JG: Impaired attention, genetics and the pathophysiology of schizophrenia. Schizophr Bull 1994, 20:31–46.

    PubMed  CAS  Google Scholar 

  16. Kremen WS, Seidman LJ, Pepple JR, et al.: Neuropsychological risk indicators for schizophrenia: a review of family studies. Schizophr Bull 1994, 20:96–108.

    Google Scholar 

  17. Green MF, Nuechterlein KH, Breitmeyer B: Backward masking performance in unaffected siblings of schizophrenic patients. Arch Gen Psychiatry 1997, 54:465–472.

    PubMed  CAS  Google Scholar 

  18. Leonard S, Adams C, Breese C, et al.: Nicotinic receptor function in schizophrenia. Schizophr Bull 1996, 22:431–445.

    PubMed  CAS  Google Scholar 

  19. Xu J, Pato MT, Torre CD, et al.: Evidence for linkage dysequilibrium between the alpha-7 nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am J Med Genet 2001, 105:669–674.

    Article  PubMed  CAS  Google Scholar 

  20. Coon H, Plaetke R, Holik J, et al.: Use of a neurophysiological trait in linkage analysis of schizophrenia. Biol Psychiatry 1993, 34:277–289.

    Article  PubMed  CAS  Google Scholar 

  21. Harrison PJ: The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 1999, 122:593–624.

    Article  PubMed  Google Scholar 

  22. Shenton ME, Dickey CC, Frumin M, et al.: A review of MRI findings in schizophrenia. Schizophr Res 2001, 49:1–52.

    Article  PubMed  CAS  Google Scholar 

  23. McCarley RW, Wible CG, Frumin M, et al.: MRI anatomy of schizophrenia. Biol Psychiatry 1999, 45:1099–1119.

    Article  PubMed  CAS  Google Scholar 

  24. Hulshoff Pol HE, Schnack H, Bertens MG, et al.: Volume changes in gray matter in patients with schizophrenia. Am J Psychiatry 2002, 159:244–250.

    Article  PubMed  Google Scholar 

  25. Deicken RF, Johnson C, Pegues M: Proton magnetic resonance spectroscopy of the human brain in schizophrenia. Rev Neuosci 2000, 11:147–158.

    CAS  Google Scholar 

  26. Crespo-Facorro B, Kim J, Andreasen NC, et al.: Insular cortex abnormalities in schizophrenia: a structural magnetic resonance imaging study of first-episode patients. Schizophr Res 2000, 46:35–43.

    Article  PubMed  CAS  Google Scholar 

  27. Sigmundsson T, Suckling J, Maier M, et al.: Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 2001, 158:234–243.

    Article  PubMed  CAS  Google Scholar 

  28. Fukuzako HH, Kodama S, Fukuzako T, et al.: Subtype-associated metabolite differences in temporal lobe in schizophrenia detected by proton magnetic resonance spectroscopy. Psychiatr Res 1999, 92:45–56.

    Article  CAS  Google Scholar 

  29. Fukuzako H, Fukuzako T, Hashiguichi T, et al.: Changes in levels of phosphorous metabolites in temporal lobs of drugnaive schizophrenic patients. Am J Psychiatry 1999, 156:1205–1208.

    PubMed  CAS  Google Scholar 

  30. Shergill SS, Cameron LA, Brammer MJ, et al.: Modality specific neural correlates of auditory and somatic hallucinations, areas involved in the processing of external speech. J Neurol Neurosurg Psychiatry 2001, 71:688–690.

    Article  PubMed  CAS  Google Scholar 

  31. Heckers S, Rauch SL, Goff D, et al.: Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1998, 1:318–323.

    Article  PubMed  CAS  Google Scholar 

  32. McGuire PK, Silbersweig DA, Wright IC, et al.: Abnormal monitoring of inner speech: a physiological basis for auditory hallucinations. Lancet 1995, 346:596–600.

    Article  PubMed  CAS  Google Scholar 

  33. Fukuzako H: Heritability heightens brain metabolite differences in schizophrenia. J Neuropsychiatry Clin Neurosci 2000,12:95–97.

    PubMed  CAS  Google Scholar 

  34. Ananth H, Popescu I, Critchley HD, et al.: Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. Am J Psychiatry 2002, 159:1497–1505.

    Article  PubMed  Google Scholar 

  35. Cecil KM, Lenkinski RE, Gur RE, Gur RC: Proton magnetic resonance spectroscopy in the frontal and temporal lobes of neuroleptic naive patients with schizophrenia. Neuropsychopharmacology 1998, 20:131–140.

    Article  Google Scholar 

  36. Stanley JA, Williamson PC, Drost DJ, et al.: An in vivo study of the prefrontal cortex of schizophrenia patients at different stages of illness via phosphorous magnetic resonance spectroscopy. Arch Gen Psychiatry 1995, 52:399–406.

    PubMed  CAS  Google Scholar 

  37. Kato T, Shioiri T, Murashita J, et al.: Lateralized abnormality of high-energy phosphate and bilateral reduction of phosphomonoester measured by phosphorous-31 magnetic resonance spectroscopy of the frontal lobes in schizophrenia. Psychiatry Res 1995, 61:151–160.

    Article  PubMed  CAS  Google Scholar 

  38. Bertolino A, Callicott JH, Mattay VS, et al.: The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 2001, 49:39–46.

    Article  PubMed  CAS  Google Scholar 

  39. Stevens AA, Goldman-Rakic PS, Gore JC, et al.: Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 1998, 55:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  40. Carter CS, Perlstein W, Ganguli R, et al.: Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 1998, 155:1285–1287.

    PubMed  CAS  Google Scholar 

  41. Manoach DS, Gollub RL, Benson ES, et al.: Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 2000, 48:99–109.

    Article  PubMed  CAS  Google Scholar 

  42. Curtis VA, Bullmore ET, Morris RG, et al.: Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res 1999, 37:35–44.

    Article  PubMed  CAS  Google Scholar 

  43. Callicott JH, Bertolino A, Mattay VS, et al.: Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex 2000, 10:1078–1092.

    Article  PubMed  CAS  Google Scholar 

  44. Ramsey NF, Konig HA, Welles P, et al.: Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain 2002, 125:1793–807.

    Article  PubMed  CAS  Google Scholar 

  45. Selemon LD, Rajkowska G, Goldman-Rakic PS: Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and area 17. Arch Gen Psychiatry 1995, 52:805–818.

    PubMed  CAS  Google Scholar 

  46. Selemon LD, Goldman-Rakic PS: The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999, 45:17–25.

    Article  PubMed  CAS  Google Scholar 

  47. Lawrie SM, Buechel C, Whalley H, et al.: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 2002, 51:1008–1011.

    Article  PubMed  Google Scholar 

  48. Bullmore ET, Frangou S, Murray RM: The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia. Schizophr Res 1997, 28:143–156.

    Article  PubMed  CAS  Google Scholar 

  49. Weinberger DR, Berman KF, Suddath R, Torrey EF: Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and region cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992, 149:890–897.

    PubMed  CAS  Google Scholar 

  50. Staal WG, Hulshoff HE, Schnack H, et al.: Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 1998, 155:1784–1786.

    PubMed  CAS  Google Scholar 

  51. Early TS, Posner MI, Reiman EM, Raichle ME: Hyperactivity of the left striatopallidal projection II: phenomenology and thought disorder. Psychiatr Dev 1989, 2:109–121.

    Google Scholar 

  52. Van Erp TGM, Saleh PA, Rosso IM, et al.: Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings and healthy unrelated volunteers. Am J Psychiatry 2002, 159:1514–1520.

    Article  PubMed  Google Scholar 

  53. Steel RM, Whalley H, Miller P, et al.: Structural MRI of the brain in presumed obligate carriers of genes for schizophrenia, their affected and unaffected siblings. J Neurol Neurosurg Psychiatry 2002, 72:455–458.

    PubMed  CAS  Google Scholar 

  54. Seidman LJ, Faraone SV, Goldstein JM, et al.: Left hippocampal volume as a vulnerability indicator for schizophrenia: an MRI morphometric sutdy of non-psychotic first degree relatives. Arch Gen Psychiatry 2002, 59:839–849. An important question is whether brain abnormalities observed in nonpsychotic relatives vary as a function of familial loading, typically defined as the number of persons diagnosed with schizophrenia in a family. Compared with control individuals, nonpsychotic relatives, particularly those with two family members with schizophrenia, had significantly smaller left hippocampi that correlated with reduced verbal memory performance. Results support the notion that hippocampal reduction may be a marker of genetic vulnerability to schizophrenia.

    Article  PubMed  Google Scholar 

  55. Seidman LJ, Faraone SV, Goldstein JM, et al.: Thalamic and amygdala-hippocampal volume reductions in first degree relatives of schizophrenic patients: an MRI-based morphometric analysis. Biol Psychiatry 1999, 46:941–954.

    Article  PubMed  CAS  Google Scholar 

  56. Staal WG, Hulshoff Pol HE, Schnack HG, et al.: Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000, 157:416–421.

    Article  PubMed  CAS  Google Scholar 

  57. Sharma T, Lancaster E, Lee D, et al.: Brain changes in schizophrenia: volumetric MRI study of families multiply affected with schizophrenia-the Maudsley family study 5. Br J Psychiatry 1998, 173:132–138.

    PubMed  CAS  Google Scholar 

  58. O’Driscoll GA, Florencio PS, Gagnon D, et al.: Amygdalahippocampal volume and verbal memory in first-degree relatives of schizophrenic patients. Psychiatry Res 2001, 107:75–85.

    Article  PubMed  CAS  Google Scholar 

  59. Keshavan MS, Montrose DM, Pierri JN, et al.: Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 1997, 21:1285–1295.

    Article  PubMed  CAS  Google Scholar 

  60. Lawrie SM, Whalley H, Kestelman JN, et al.: Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 1999, 353:30–33.

    Article  PubMed  CAS  Google Scholar 

  61. Lawrie SM, Whalley HC, Abukmeil SS, et al.: Structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 2001, 49:811–823.

    Article  PubMed  CAS  Google Scholar 

  62. Cannon TD, Van Erp TGM, Huttunen M, et al.: Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings and controls. Arch Gen Psychiatry 1998, 55:1084–1091.

    Article  PubMed  CAS  Google Scholar 

  63. Chua SE, Sharma T, Takei N, et al.: A magnetic resonance imaging study of corpus callosum size in familial schizophrenic subjects, their relatives, and normal controls. Schizophr Res 2000, 41:397–403.

    Article  PubMed  CAS  Google Scholar 

  64. Blackwood DHR, Glabus MF, Dunan J, et al.: Altered cerebral perfusion measured by SPECT in relatives of patients with schizophrenia: correlations with memory and P300. Br J Psychiatry 1999, 175:357–366.

    PubMed  CAS  Google Scholar 

  65. Spence SA, Liddle PF, Stefan MD, et al.: Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk: Focal dysfunction and distributed disconnectivy reappraised. Br J Psychiatry 2000, 176:52–60. This report, one of the few studies of functional brain acitivity in firstdegree relatives of persons with schizophrenia, provides preliminary evidence of functional brain abnormalities in nonpsychotic relatives during performance of a verbal fluency task. Relatives showed reduced activation in the precuneus, and a decreased relationship between activation in the prefrontal cortex and other brain regions (precunues and anterior cingulate). Results suggest that prefrontal disconnectivity may be a trait-marker for the genetic risk of schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  66. O’Driscoll GA, Benkelfat C, Florencio PS, et al.: Neural correlates of eye tracking deficits in first-degree relatives of schizophrenic patients: a positron emission tomography study. Arch Gen Psychiatry 1999, 56:1127–1134.

    Article  PubMed  CAS  Google Scholar 

  67. Wencel HE, Seidman LJ, Kennedy D, et al.: Relationship of hippocampal and thalamic volume to dorsolateral prefrontal cortex activation in first-degree relatives of persons with schizophrenia. Schizophr Res 2001, 49(suppl.):189.

    Google Scholar 

  68. Callicott JH, Egan MF, Bertolino A, et al.: Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 1998, 44:941–950.

    Article  PubMed  CAS  Google Scholar 

  69. Klemm S, Rzanny R, Riehmann S, et al.: Cerebral phosphate metabolism in first-degree relatives of patients with schizophrenia. Am J Psychiatry 2001, 158:958–960.

    PubMed  CAS  Google Scholar 

  70. Egan MF, Goldberg TE, Kolchana BS, et al.: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98:6917–6922. This article reviews evidence from several studies that a frequent human polymorphism of the COMT gene is linked to poorer working memory, executive dysfunction, and prefrontal "inefficiency" in persons with schizophrenia and their relatives. Family based association studies reveal excessive transmission of the val allele to schizophrenic offspring and poorer prefrontal function. However, poorer prefrontal function is also observed in normal subjects carrying the val allele. This polymorphism increases the rate of termination of dopamine action in the synapse in the prefrontal cortex, and, therefore, may play a minor role in the risk for schizophrenia by altering the efficiency of prefrontal function.

    Article  PubMed  CAS  Google Scholar 

  71. Callicott JH, Egan MF, Goldberg TE, et al.: COMT Val 108/158 Met polymorphism effects DLPFC efficiency in healthy individuals. Biol Psychiatry 2002, 51:105S.

    Google Scholar 

  72. Avramopoulos D, Stefanis NC, Hantoumi I, et al.: Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele. Mol Psychiatry 2002, 7:706–711.

    Article  PubMed  CAS  Google Scholar 

  73. Weinberger DR, Egan MF, Bertolino A, et al.: Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001, 50:825–844. This extensive article reviews prefrontal cortical biology as it relates to the pathophysiology and genetic risk for schizophrenia. There is an excellent review of the evidence supporting prefrontal abnormalities, dopamine, and other biologic abnormalities specifically linked to clinical disturbances in schizophrenia and nonpsychotic family members. The authors link this information to their own results and other recent studies on the COMT gene polymorphism in families affected by schizophrenia. They suggest that, although the val abnormality is unlikely to account for more than a small percentage of cases, this represents an important biologic model for understanding brain-gene relationships in schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  74. Ohmori O, Shinkai T, Kojima H, et al.: Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics. Neurosci Lett 1998, 43:109–112.

    Article  Google Scholar 

  75. Nolan KA, Volavka J, Czobor P, et al.: Suicidal behavior in patients with schizophrenia is related to COMT polymorphism. Psychiatr Genet 2000, 10:117–124.

    PubMed  CAS  Google Scholar 

  76. Lachman HM, Morrow B, Shprintzen R, et al.: Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardiofacial syndrome. Am J Med Genet 1996, 67:468–472.

    Article  PubMed  CAS  Google Scholar 

  77. Tiihonen J, Hallikainen T, Lachman H, et al.: Association between the functional variant of the catechol-O-methyltransferase (COMT) gene and type 1 alcoholism. Mol Psychiatry 1999, 4:286–289.

    Article  PubMed  CAS  Google Scholar 

  78. Norton N, Kirov G, Zammit S, et al.: Schizophrenia and functional polymorphisms in the MAOA and COMT genes: no evidence for association or epistasis. Am J Med Genet 2002, 114:491–496.

    Article  PubMed  Google Scholar 

  79. Takase K, Ohtsuki T, Migita O, et al.: Association of ZNF74 gene genotypes with age-at-onset of schizophrenia. Schizophr Res 2001, 52:161–165.

    Article  PubMed  CAS  Google Scholar 

  80. Rypma B, D’Esposito M: The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci U S A 1999, 96:6558–6563.

    Article  PubMed  CAS  Google Scholar 

  81. O’Donnell P, Lewis BL, Weinberger DR, Lipska BK: Neonatal hippocampal damage alters physiological response properiteis to VTA stimulation in the adult rat prefrontal cortex. Biol Psychiatry. 2002, 51:61S.

    Google Scholar 

  82. Lipska BK, Halim N, Weinberger DR: Transient disconnection of the hippocampus in neonatal rat as model of schizophrenia. Biol Psychiatry 2002, 51:9S.

    Google Scholar 

  83. Bertolino A, Altamura M, Brudaglio F, et al.: Specific relationship between N-acetylaspartate levels in dorsolateral prefrontal cortex and working memory in schizophreniform disorder. Biol Psychiatry 2002, 51:18S.

    Article  Google Scholar 

  84. Bertolino A, Roffman JL, Lipska BK, et al.: Reduced N-acetylaspartate in prefrontal cortex of adult rats with neonatal hippocampal damage. Cerebral Cortex 2002, 12:983–990.

    Article  PubMed  Google Scholar 

  85. Schaaf MJ, De Kloet ER, Vreugdenhil E: Corticosterone effects on BDNF expression in the hippocampus: implications for memory formation. Stress 2000, 3:201–208.

    PubMed  CAS  Google Scholar 

  86. Krebs MO, Guillin O, Bourdell MC, et al.: Brain-derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 2000, 5:558–562.

    Article  PubMed  CAS  Google Scholar 

  87. Durany N, Michel T, Zochling R, et al.: Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001, 52:79–86.

    Article  PubMed  CAS  Google Scholar 

  88. Takahashi M, Shirakawa O, Toyooka K, et al.: Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000, 5:293–300.

    Article  PubMed  CAS  Google Scholar 

  89. Xu H, Qing H, Lu W, et al.: Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 2002, 321:65–68.

    Article  PubMed  CAS  Google Scholar 

  90. Angelucii F, Mathe AA, Aloe L: Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haliperidol and risperidone administration. J Neurosci Res 2000, 60:783–794.

    Article  Google Scholar 

  91. Malhotra AK, Goldman D, Bazzanti C, et al.: A functional serotonin transporter polymorphism is association with psychosis in neuroleptic-free schizophrenics. Mol Psychiatry 1998, 3:328–332.

    Article  PubMed  CAS  Google Scholar 

  92. Hariri AR, Mattay VS, Tessitore A, et al.: Serotonin transporter genetic variation and the response of the human amygdala. Science 2002, 297:400–403.

    Article  PubMed  CAS  Google Scholar 

  93. Gewirtz JC, Chen AC, Terwilliger R, et al.: Modulation of DOIinduced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol Biochem Behav 2002, 73:317–326.

    Article  PubMed  CAS  Google Scholar 

  94. Narita K, Sasaki T, Akaho F, et al.: Human leukocyte antigen and season of birth in Japanese patients with schizophrenia. Am J Psychiatry 2000, 157:1173–1175.

    Article  PubMed  CAS  Google Scholar 

  95. Moldin SO, Gottesman II: Genes, experience, and chance in schizophrenia-positioning for the 21st century. Schizophr Bull 1997, 23:547–561.

    PubMed  CAS  Google Scholar 

  96. Tsuang MT, Stone WS, Seidman LJ, et al.: Treatment of schizotaxia with risperidone: four case studies. Biol Psychiatry 1999, 45:1412–1418.

    Article  PubMed  CAS  Google Scholar 

  97. Faraone SV, Green AI, Seidman LJ, Tsuang MT: Clinical implications for schizotaxia: a new direction for research. Schizophr Bull 2001, 27:1–18.

    PubMed  CAS  Google Scholar 

  98. Tsuang MT, Gilbertson MW, Faraone SV: Genetic transmission of negative and positive symptoms in the biological relatives of schizophrenics. In Negative Versus Positive Schizophrenia. Edited by Marneros A, Andreasen NC, Tsuang MT. Berlin: Springer-Verlag; 1991:265–291.

    Google Scholar 

  99. Schreiber H, Bauer-Seack K, Kornhuber HH, et al.: Brain morphology in adolescents at genetic risk for schizophrenia assessed by qualitative and quantitative magnetic resonance imaging. Schizophr Res 1999, 40:81–84.

    Article  PubMed  CAS  Google Scholar 

  100. Cannon TD, van Erp TG, Rosso IM, et al.: Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 2002, 59:35–41. An important issue is the relative role of obstetric and familial-genetic risk factors in brain abnormalities associated with schizophrenia. Fetal hypoxia is associated with greater structural brain abnormalities among schizophrenic patients and their nonpsychotic siblings than it is in control individuals. The effect of hypoxia is larger than in control individuals, suggesting a vulnerability of the brain in people at risk for schizophrenia. Results suggest a gene-environment interaction model of pathophysiology in schizophrenia.

    Article  PubMed  Google Scholar 

  101. Orlova VA, Trubnikov VI, Odintsova SA, et al.: Genetic analysis of anatomical and morphological traits of the brain, determined by magnetic resonance imaging in families of schizophrenic patients. Genetika 1999, 35:998–1004.

    PubMed  CAS  Google Scholar 

  102. Savina TD, Orlova VA, Trubnikov VI, et al.: Rigidity of the psyche processes and factors predisposing to schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2002, 102:14–19.

    PubMed  CAS  Google Scholar 

  103. Frangou S, Sharma T, Sigmudsson T, et al.: The Maudsley Familiy Study. Normal planum temporale asymmetry in familial schizophrenia: a volumetric MRI study. Br J Psychiatry 1997, 170:328–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidman, L.J., Wencel, H.E. Genetically mediated brain abnormalities in schizophrenia. Curr Psychiatry Rep 5, 135–144 (2003). https://doi.org/10.1007/s11920-003-0030-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-003-0030-4

Keywords

Navigation