Skip to main content

Advertisement

Log in

Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The resistance of bone to fracture is determined by its geometric and material properties. The geometry and density can be determined by radiographic methods, but material properties such as collagen structure, mineral composition, and crystal structure currently require analysis by invasive techniques. Backscatter electron imaging provides quantitative information on the distribution of the mineral within tissue sections, and infrared and other vibrational spectroscopic methods can supplement these data, providing site-specific information on mineral content as well as information on collagen maturity and distributions of crystal size and composition. This information contributes to the knowledge of “bone quality.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Felsenberg D, Boonen S: The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 2005, 27:1–11.

    Article  PubMed  Google Scholar 

  2. Rubin CD: Emerging concepts in osteoporosis and bone strength. Curr Med Res Opin 2005, 21:1049–1056.

    Article  PubMed  Google Scholar 

  3. Gokhale J, Robey PG, Boskey AL: The biochemistry of bone. In Osteoporosis, edn 2, vol. 1. Edited by Marcus R, Feldman D, Kelsey J. San Diego: Academic Press; 2001:107–189.

    Google Scholar 

  4. Young MF: Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 2003, 14(Suppl 3):S35-S42.

    PubMed  CAS  Google Scholar 

  5. Butler WT, Brunn JC, Qin C, McKee MD: Extracellular matrix proteins and the dynamics of dentin formation. Connect Tissue Res 2002, 43:301–307.

    PubMed  CAS  Google Scholar 

  6. McCreadie BR, Goulet RW, Feldkamp LA, Goldstein SA: Hierarchical structure of bone and micro-computed tomography. Adv Exp Med Biol 2001, 496:67–83.

    PubMed  CAS  Google Scholar 

  7. Wise LM, Waldman SD, Kasra M, et al.: Effect of zoledronate on bone quality in the treatment of aseptic loosening of hip arthroplasty in the dog. Calcif Tissue Int 2005, 77:367–375. This study validates back-scattered electron (BSE) imaging measurements based on density fractionation studies. Dose-dependent changes in bone material properties are demonstrated in a canine model of prosthetic loosening.

    Article  PubMed  CAS  Google Scholar 

  8. Burr DB, Miller L, Grynpas M, et al.: Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone 2003, 33:960–969.

    Article  PubMed  CAS  Google Scholar 

  9. Tong W, Glimcher MJ, Katz JL, et al.: Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 2003, 72:592–598.

    Article  PubMed  CAS  Google Scholar 

  10. Hassenkam T, Jorgensen HL, Pedersen MB, et al.: Atomic force microscopy on human trabecular bone from an old woman with osteoporotic fractures. Micron 2005, 36:681–687. This paper shows abnormal collagen fibrils in an osteoporotic patient, suggesting a link between collagen structure and fracture risk.

    Article  PubMed  CAS  Google Scholar 

  11. Rubin MA, Jasiuk I, Taylor J, et al.: TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 2003, 33:270–282.

    Article  PubMed  Google Scholar 

  12. Gomberg BR, Saha PK, Wehrli FW: Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 2005, 12:1320–1332.

    Article  PubMed  Google Scholar 

  13. Majumdar S, Newitt D, Mathur A, et al.: Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with x-ray tomographic microscopy and biomechanics. Osteoporos Int 1996, 6:376–385.

    Article  PubMed  CAS  Google Scholar 

  14. Boivin G, Vedi S, Purdie DW, et al.: Influence of estrogen therapy at conventional and high doses on the degree of mineralization of iliac bone tissue: a quantitative microradiographic analysis in postmenopausal women. Bone 2005, 36:562–567.

    Article  PubMed  CAS  Google Scholar 

  15. Boyde A, Jones SJ: Backscattered electron imaging of dental tissues. Anat Embryol (Berl) 1983, 168:211–226.

    Article  CAS  Google Scholar 

  16. Roschger P, Fratzl P, Eschberger J, Klaushofer K: Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 1998, 23:319–326.

    Article  PubMed  CAS  Google Scholar 

  17. Geoffroy V, Kneissel M, Fournier B, et al.: High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage. Mol Cell Biol 2002, 22:6222–6233.

    Article  PubMed  CAS  Google Scholar 

  18. Zérath E, Grynpas M, Holy X, et al.: Spaceflight affects bone formation in rhesus monkeys: a histological and cell culture study. Am J Physiol 2002, 93:1047–1056.

    Google Scholar 

  19. Boyde A, Compston JE, Reeve J, et al.: Effect of estrogen suppression on the mineralization density of iliac crest biopsies in young women as assessed by backscattered electron imaging. Bone 1998, 22:241–250.

    Article  PubMed  CAS  Google Scholar 

  20. Stewart TL, Roschger P, Misof BM, et al.: Association of COLIA1 Sp1 alleles with defective bone nodule formation in vitro and abnormal bone mineralization in vivo. Calcif Tissue Int 2005, 77:113–118.

    Article  PubMed  CAS  Google Scholar 

  21. Skedros JG, Holmes JL, Vajda EG, Bloebaum RD: Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol 2005, 286:781–803. This study, demonstrating that cement lines are not hypomineralized but, in fact, may be hypermineralized, provides an excellent discussion of the limitations of BSE measurements.

    PubMed  Google Scholar 

  22. Sahar ND, Hong SI, Kohn DH: Micro- and nano-structural analyses of damage in bone. Micron 2005, 36:617–629. This review considers the application of a variety of high-resolution techniques (laser scanning confocal microscopy, Raman spectroscopy, transmission electron microscopy, and SEM) for the analysis of crack propagation and fracture in bone.

    Article  PubMed  Google Scholar 

  23. Boskey A, Mendelsohn R: Infrared analysis of bone in health and disease. J Biomed Opt 2005, 10:031102–031106. This article reviews in detail the technique of infrared analysis and how it can be applied to bone.

    Article  PubMed  Google Scholar 

  24. Carden A, Morris MD: Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Opt 2000, 5:259–268.

    Article  PubMed  CAS  Google Scholar 

  25. Reginato AJ: Calcium pyrophosphate dihydrate gout and other crystal deposition diseases. Curr Opin Rheumatol 1991, 3:676–683.

    Article  PubMed  CAS  Google Scholar 

  26. Mendelsohn R, Hassankhani A, DiCarlo E, Boskey A: FT-IR microscopy of endochondral ossification at 20 mu spatial resolution. Calcif Tissue Int 1989, 44:20–24.

    Article  PubMed  CAS  Google Scholar 

  27. Kim H, Rey C, Glimcher MJ: X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage. Calcif Tissue Int 1996, 59:58–63.

    Article  PubMed  CAS  Google Scholar 

  28. Gadaleta SJ, Paschalis EP, Betts F, et al.: Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between x-ray diffraction and infrared data. Calcif Tissue Int 1996, 58:9–16.

    PubMed  CAS  Google Scholar 

  29. Ou-Yang H, Paschalis EP, Boskey AL, Mendelsohn R: Twodimensional vibrational correlation spectroscopy of in vitro hydroxyapatite maturation. Biopolymers 2000, 57:129–139.

    Article  PubMed  CAS  Google Scholar 

  30. Paschalis EP, Betts F, DiCarlo E, et al.: FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 1997, 61:480–486.

    Article  PubMed  CAS  Google Scholar 

  31. Paschalis EP, Betts F, DiCarlo E, et al.: FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 1997, 61:487–492.

    Article  PubMed  CAS  Google Scholar 

  32. Boskey AL, DiCarlo E, Paschalis E, et al.: Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 2005, 16:2031–2038.

    Article  PubMed  CAS  Google Scholar 

  33. Monier-Faugere MC, Geng Z, Paschalis EP, et al.: Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res 1999, 14:1768–1778.

    Article  PubMed  CAS  Google Scholar 

  34. Gadeleta SJ, Boskey AL, Paschalis E, et al.: A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate -treated cynomolgus monkeys (Macaca fascicularis). Bone 2000, 27:541–550. This was the first study to demonstrate a relationship between mechanical strength and infrared properties in the same model.

    Article  PubMed  CAS  Google Scholar 

  35. Huang RY, Miller LM, Carlson CS, Chance MR: In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 2003, 33:514–521.

    Article  PubMed  CAS  Google Scholar 

  36. Bohic S, Rey C, Legrand A, et al.: Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone 2000, 26:341–348.

    Article  PubMed  CAS  Google Scholar 

  37. Busa B, Miller LM, Rubin CT, et al.: Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 2005, 77:386–394. This recent study demonstrated the relationship between bone elastic modulus and infrared parameters. It also provides new insight into the rate of secondary mineralization in rat bone.

    Article  PubMed  CAS  Google Scholar 

  38. Marcott C, Reeder RC, Paschalis EP, et al.: Infrared microspectroscopic imaging of biomineralized tissues using a mercury-cadmium-telluride focal-plane array detector. Cell Mol Biol (Noisy-le-grand) 1998, 44:109–115.

    CAS  Google Scholar 

  39. Faibish D, Gomes A, Boivin G, et al.: Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 2005, 36:6–12.

    Article  PubMed  CAS  Google Scholar 

  40. Paschalis EP, Recker R, DiCarlo E, et al.: Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res 2003, 18:1942–1946.

    Article  PubMed  CAS  Google Scholar 

  41. Paschalis EP, Shane E, Lyritis G, et al.: Bone fragility and collagen cross-links. J Bone Miner Res 2004, 19:2000–2004.

    Article  PubMed  Google Scholar 

  42. Paschalis EP, Burr DB, Mendelsohn R, et al.: Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1-34) for 18 months. J Bone Miner Res 2003, 18:769–775.

    Article  PubMed  CAS  Google Scholar 

  43. Ou-Yang H, Paschalis EP, Mayo WE, et al.: Infrared microscopic imaging of bone: spatial distribution of CO 3 2-. J Bone Miner Res 2001, 16:893–900.

    Article  PubMed  CAS  Google Scholar 

  44. Blank RD, Baldini TH, Kaufman M, et al.: Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res 2003, 44:134–142.

    PubMed  CAS  Google Scholar 

  45. Ouyang H, Sherman PJ, Paschalis EP, et al.: Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc 2004, 58:1–9.

    Article  PubMed  CAS  Google Scholar 

  46. Paschalis EP, Boskey AL, Kassem M, Eriksen EF: Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res 2003, 18:955–959.

    Article  PubMed  CAS  Google Scholar 

  47. Paschalis EP, Glass EV, Donley DW, Eriksen EF: Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 2005, 90:4644–4649.

    Article  PubMed  CAS  Google Scholar 

  48. Faibish D, Ott SM, Boskey AL: Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 2006, 443:28–38.

    Article  PubMed  Google Scholar 

  49. Draper ER, Morris MD, Camacho NP, et al.: Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy. J Bone Miner Res 2005, 20:1968–1972. This innovative study suggests the potential for using Raman imaging in situ.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele L. Boskey PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boskey, A.L. Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Curr Osteoporos Rep 4, 71–75 (2006). https://doi.org/10.1007/s11914-006-0005-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-006-0005-6

Keywords

Navigation