Skip to main content

Advertisement

Log in

A Metabolic Therapy for Malignant Glioma Requires a Clinical Measure

  • Neuro-oncology (S Nagpal, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Cancers are “reprogrammed” to use a much higher rate of glycolysis (GLY) relative to oxidative phosphorylation (OXPHOS), even in the presence of adequate amounts of oxygenation. Originally identified by Nobel Laureate Otto Warburg, this hallmark of cancer has recently been termed metabolic reprogramming and represents a way for the cancer tissue to divert carbon skeletons to produce biomass. Understanding the mechanisms that underlie this metabolic shift should lead to better strategies for cancer treatments. Malignant gliomas, cancers that are very resistant to conventional treatments, are highly glycolytic and seem particularly suited to approaches that can subvert this phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bensinger, S.J. and H.R. Christofk. New aspects of the Warburg effect in cancer cell biology. Sem Cell Develop Biol. 2012.

  2. Lu C, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83.

  4. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochemistry. 1997;69:1484–90.

    Article  CAS  Google Scholar 

  6. Galeffi F, et al. Lactate uptake contributes to the NAD(P)H biphasic response and tissue oxygen response during synaptic stimulation in area CA1 of rat hippocampal slices. J Neurochemistry. 2007;103:2449–61.

    Article  CAS  Google Scholar 

  7. Warburg O. The metabolism of tumours. London: Arnold Constable; 1930.

    Google Scholar 

  8. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J General Physiol. 1927;8:519–30.

    Article  CAS  Google Scholar 

  9. Ak, P. and A.J. Levine. p53 and NF-kB: different strategies for responding to stress leads to a functional antagonism. FASEB J. 2010.

  10. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  11. Gleeson, L.E. and F.J. Sheedy. Metabolic reprogramming & inflammation: fuelling the host response to pathogens. Semin Immunol. 2016.

  12. • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–34. A very coherent explanation of the cellular underpinnings of the Warburg effect

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vander Heiden, M.G., et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harbor Symposium on Quant Biology. 2012.

  14. Kilburn DG, Lilly MD, Webb FC. The energetics of mammalian cell growth. J Cell Science. 1969;4:645–54.

    CAS  PubMed  Google Scholar 

  15. Racker E. Why do tumor cells have a high aerobic glycolysis. J Cell Physiol. 1976;89:697–700.

    Article  CAS  PubMed  Google Scholar 

  16. Nathan C, Ding A. SnapShot: reactive oxygen intermediates (ROI). Cell Cycle. 2010;140:951.

    Google Scholar 

  17. Mekhail K, et al. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol. 2004;6:642–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277:23111–5.

    Article  CAS  PubMed  Google Scholar 

  19. Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Disease Models & Mech. 2011;4:727–32.

    Article  CAS  Google Scholar 

  20. • Sonveaux P, et al. Targeted lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clinical Investigation. 2008;118:3930–42. Describes intercellular relationships wherein rates of GLY to OXPHOS are determined by hypoxia. Offers insight into the underpinnings of metabolic symbiosis

    CAS  Google Scholar 

  21. Vegran F, et al. Lactate influx through the endothelial cell monocarboxylate transporter (MCT) supports and NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.

    Article  CAS  PubMed  Google Scholar 

  22. • Fantin VR, St.-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34. Demonstrates how targeting an isoform of LDH overexpressed by cancer cells can slow growth

    Article  CAS  PubMed  Google Scholar 

  23. Le A, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010;107:2037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fischer K, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dietl K, et al. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunology. 2010;184:1200–9.

    Article  CAS  Google Scholar 

  26. Herling, A., et al. Enzymatic features of the glucose metabolism in tumor cells. FEBS J. 2011.

  27. Marin-Hernandez A, et al. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an overexpressed but strongly product-inhibited hexokinase. FEBS J. 2006;273:1975–88.

    Article  CAS  PubMed  Google Scholar 

  28. DeBerardinis RJ, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2008;104:19345–50.

    Article  Google Scholar 

  29. Yuneva M, et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178:93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wise DR, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105:18782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao P, et al. c-Myc suppression of mir-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan Y, Dickman KG, Zong WX. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem. 2010;285:7324–33.

    Article  CAS  PubMed  Google Scholar 

  33. Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in an hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakajima, E.C. and B. Van Houten. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinogen. 2012.

  36. Pavlides S, et al. The reverse Warburg effect. Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.

    Article  CAS  PubMed  Google Scholar 

  37. Seth P, et al. On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate. Neoplasia. 2011;13:60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coe EL, Strunk RC. The effect of oxamate on glycolysis in intact ascites tumor cells. I. Kinetic evidence for a dual glycolytic system. Biochimica et Biophys Acta. 1970;208:189–202.

    Article  CAS  Google Scholar 

  39. Stafford P, et al. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjunctive therapy for glioma. Nutrition & Metabolism. 2010;7:74.

    Article  Google Scholar 

  40. Mukherjee P, Abate LE, Seyfried TN. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clinical Cancer Res. 2004;10:5622–9.

    Article  CAS  Google Scholar 

  41. Seyfried, T.N., et al. Metabolic management of brain cancer. Biochimica et Biophys Acta. 2010.

  42. Zuccoli G, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutrition & Metabolism. 2010;7:33.

    Article  Google Scholar 

  43. Rempel A, et al. Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res. 1996;56:2468–71.

    CAS  PubMed  Google Scholar 

  44. Wolf, A., et al.. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011: 1–14.

  45. Stein M, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010;70:1388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh D, et al. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol. 2005;181:507–14.

    Article  PubMed  Google Scholar 

  47. Prasanna VK, et al. Differential responses to tumor and normal brain to the combined treatment of 2-DG and radiation in glioblastoma. J Cancer Res Ther. 2005;5(suppl 1):44–7.

    Google Scholar 

  48. Boros LG, et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57:4242–8.

    CAS  PubMed  Google Scholar 

  49. Rais B, et al. Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Letts. 1999;456:113–8.

    Article  CAS  Google Scholar 

  50. Libby G, et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32:1620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anisimov VN, et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontology. 2005;40:685–93.

    Article  CAS  Google Scholar 

  52. Evans JM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thangaraju M, et al. Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochem J. 2009;417:379–89.

    Article  CAS  PubMed  Google Scholar 

  54. Thangaraju M, et al. SLCA8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Cancer Res. 2006;66:11560–4.

    Article  CAS  PubMed  Google Scholar 

  55. Kim DY, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  56. Papandreou I, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen-consumption. Cell Metab. 2006;3:187–97.

    Article  CAS  PubMed  Google Scholar 

  57. Knoechel TR, et al. Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands. Biochemistry. 2006;45:402–15.

    Article  CAS  PubMed  Google Scholar 

  58. Papandreou, I., T. Goliasova, and N.C. Denko. Anti-cancer drugs that target metabolism, is dichloroacetate the new paradigm. Int J Cancer. 2010.

  59. Sun RC, et al. Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat. 2010;120:253–60.

    Article  CAS  PubMed  Google Scholar 

  60. Stockwin LH, et al. Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int J Cancer. 2010;127:2510–9.

    Article  CAS  PubMed  Google Scholar 

  61. Michelakis ED, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2:31ra34.

    Article  CAS  PubMed  Google Scholar 

  62. Wise DR, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108:19611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  64. • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis. Nat Rev Cancer. 2004;4:891–9. One of the best review articles on the Warburg effect

    Article  CAS  PubMed  Google Scholar 

  65. Xu RH, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65:613–21.

    CAS  PubMed  Google Scholar 

  66. Kaura B, Bagga R, Patel FD. Evaluation of the pyruvate kinase type M2 (Tu M2-PK) as a tumor marker for cervical carcinoma. J Obstet Gynaecol Res. 2004;30:193–6.

    Article  CAS  PubMed  Google Scholar 

  67. Hardt PD, et al. Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br J Cancer. 2004;91:980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lagerwaard FJ, et al. Identification of prognostic factors in patients with brain metastases: a review of 1292 patients. Int J Radiat Oncol Biol Phys. 1999;43:795–803.

    Article  CAS  PubMed  Google Scholar 

  69. Koukourakis MI, et al. Serum and tissue LDH levels in patients with breast/gynecological cancer and benign diseases. Gynecol Obstet Investig. 2009;67:162–8.

    Article  CAS  Google Scholar 

  70. Kurhanewicz J, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation of clinical research. Neoplasia. 2011;13:81–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kurhanewicz J, Vigneron DB. Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin N Am. 2008;16:697–710.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Haddadin IS, et al. Metabolite quantification and high-field MRS in breast cancer. NMR Biomed. 2009;22:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nelson SJ, et al. In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging. 2002;16:464–76.

    Article  PubMed  Google Scholar 

  74. Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Ann Rev Biomed Eng. 2005;7:287–326.

    Article  CAS  Google Scholar 

  75. Andronesi OC, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4(116ra4):1–12.

    Google Scholar 

  76. Abragam A, Goldman M. Principles of dynamic nuclear polarization. Rep Prog Phys. 1978;41:395–9.

    Article  CAS  Google Scholar 

  77. Ardenkjaer-Larsen JH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100:10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hurd RE, et al. Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethyl pyruvate. Magn Reson Med. 2010;63:1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Park I, et al. Hyperpolarized 13C magnetic resonance imaging: application to brain tumors. Neuro Oncology. 2010;12:133–44.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Darpolor, M.M., et al.. In vivo MRSI of hyperpolarized [1-(13)C]pyruvate metabolism in rat hepatocellular carcinoma. NMR Biomed. 2010.

  81. Park I, et al. Detection of early response to temozolomide treatment in brain tumors using hyperpolerized 13C MR metabolic imaging. J Magnetic Resonance Imaging. 2011;33:1284–90.

    Article  Google Scholar 

  82. Chaumeil, M.M., et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. NeuroImage. 2011.

  83. Zierhut ML, et al. Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson. 2010;202:85–92.

    Article  CAS  PubMed  Google Scholar 

  84. Hu S, et al. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 2011;14:131–42.

    Article  CAS  PubMed  Google Scholar 

  85. Park, J.M., et al. Fast 3D spiral chemical shift imaging of mitochondrial metabolism in brain with C6 glioma using hyperpolarized [2-13C]pyruvate, in Proceedings of the 21st Annual Scientific Meeting of the ISMRM. 2012: Salt Lake City, UT. p. Program #3938.

  86. Park, J.M., et al. Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging. Neuro Oncology. 2013.

  87. Nardo, G., et al. Glycolytic phenotype and AMP kinase modify the pathologic response of tumor xenografts to VEGF neutralization. Cancer Res. 2011.

  88. Zulato, E., et al. Metabolic effects of anti-angiogenic therapy in tumor. Biochimie. 2012.

  89. Park JM, et al. Hyperpolarized 13C-lactate-to-bicarbonate ratio as a biomarker for monitoring acute response of anti-VEGF treatment. NMR Biomed. 2016;29(5):650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park, J.M., et al. Measuring mitochondrial metabolism in rat brain in vivo using MR spectroscopy of hyperpolarized [2-13C]pyruvate. NMR Biomed. 2013.

  91. Gallagher FA, et al. 13C magnetic resonance spectroscopy measurements of glutaminase activity in human heptocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med. 2008;60:253–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding Information

This study was supported by EB015891, EB019018, CA176836, S10 OD012283, and TL1 TR 001084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Recht.

Ethics declarations

Conflict of Interest

Zachary Corbin, Daniel Spielman, and Lawrence Recht declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbin, Z., Spielman, D. & Recht, L. A Metabolic Therapy for Malignant Glioma Requires a Clinical Measure. Curr Oncol Rep 19, 84 (2017). https://doi.org/10.1007/s11912-017-0637-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0637-y

Keywords

Navigation