Skip to main content

Advertisement

Log in

Tubulin-associated proteins: Aurora and Polo-like kinases as therapeutic targets in cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Tubulin is a very important target for cancer-fighting therapies; therefore, the cancer research community continues to adopt new ways of developing the therapeutic potential of tubulin and tubulin-associated proteins. Two families of tubulin-associated kinases, Aurora and Polo-like, have received significant attention regarding how they contribute to tumorigenesis and can be targeted with selective small molecule inhibitors. Aurora and Polo-like kinases play essential roles in centrosome separation, chromosome alignment and segregation, and cytokinesis. Inhibition of any of these kinases results in abnormal mitotic events (which vary depending on the particular family member) and eventually leads to apoptosis. Because of the biological consequences of inhibiting these kinases, several Aurora or Polo-like selective inhibitors have advanced to various stages of preclinical and clinical development; the most advanced are currently in phase 2 clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fuller SD, Gowen BE, Reinsch S, et al.: The core of the mammalian centriole contains gamma-tubulin. Curr Biol 1995, 5:1384–1393.

    Article  PubMed  CAS  Google Scholar 

  2. Palazzo RE, Vogel JM, Schnackenberg BJ, et al.: Centrosome maturation. Curr Top Dev Biol 2000, 49:449–470.

    Article  PubMed  CAS  Google Scholar 

  3. Badano JL, Teslovich TM, Katsanis N: The centrosome in human genetic disease. Nat Rev Genet 2005, 6:194–205.

    Article  PubMed  CAS  Google Scholar 

  4. Fazeny B, Zifko U, Meryn S, et al.: Vinorelbine-induced neurotoxicity in patients with advanced breast cancer pretreated with paclitaxel: a phase II study. Cancer Chemother Pharmacol 1996, 39:150–156.

    Article  PubMed  CAS  Google Scholar 

  5. Rojanala S, Han H, Muñoz RM, et al.: The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther 2004, 3:451–457.

    PubMed  CAS  Google Scholar 

  6. Zhou H, Kuang J, Zhong L, et al.: Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998, 20:189–193.

    Article  PubMed  CAS  Google Scholar 

  7. Sen S, Zhou H, White RA: A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 1997, 14:2195–2200.

    Article  PubMed  CAS  Google Scholar 

  8. Bischoff JR, Anderson L, Zhu Y, et al.: A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998, 17:3052–3065.

    Article  PubMed  CAS  Google Scholar 

  9. Terada Y: Role of chromosomal passenger complex in chromosome segregation and cytokinesis. Cell Struct Funct 2001, 26:653–657.

    Article  PubMed  CAS  Google Scholar 

  10. Murata-Hori M, Wang YL: The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr Biol 2002, 12:894–899.

    Article  PubMed  CAS  Google Scholar 

  11. Terada Y, Tatsuka M, Suzuki F, et al.: AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J 1998, 17:667–676.

    Article  PubMed  CAS  Google Scholar 

  12. Girdler F, Gascoigne KE, Eyers PA, et al.: Validating Aurora B as an anti-cancer drug target. J Cell Sci 2006, 119(Pt 17):3664–3675.

    Article  PubMed  CAS  Google Scholar 

  13. Ditchfield C, Johnson VL, Tighe A, et al.: Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 2003, 161:267–280.

    Article  PubMed  CAS  Google Scholar 

  14. Keen N, Taylor S: Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004, 4:927–936.

    Article  PubMed  CAS  Google Scholar 

  15. Yang H, Burke T, Dempsey J, et al.: Mitotic requirement for aurora A kinase is bypassed in the absence of aurora B kinase. FEBS Lett 2005, 579:3385–3391.

    Article  PubMed  CAS  Google Scholar 

  16. Warner SL, Muñoz RM, Stafford P, et al.: Comparing Aurora A and Aurora B as molecular targets for growth inhibition of pancreatic cancer cells. Mol Cancer Ther 2006, 5:2450–2458.

    Article  PubMed  CAS  Google Scholar 

  17. Manfredi MG, Ecsedy JA, Meetze KA, et al.: Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A 2007, 104:4106–4111.

    Article  PubMed  CAS  Google Scholar 

  18. Hoar K, Chakravarty A, Rabino C, et al.: MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol 2007, 27:4513–4525.

    Article  PubMed  CAS  Google Scholar 

  19. Clifford AB, Grand CL, Vankayalapati H, et al.: Discovery and development of MP529, a new effective and selective inhibitor of Aurora A kinase [abstract 3261]. Presented at the Annual Meeting of the American Association for Cancer Research. April 14–18, 2007; Los Angeles, CA.

  20. Gadea BB, Ruderman JV: Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 2005, 16:1305–1318.

    Article  CAS  Google Scholar 

  21. Harrington EA, Bebbington D, Moore J, et al.: VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004, 10:262–267.

    Article  PubMed  CAS  Google Scholar 

  22. Soncini C, Carpinelli P, Gianellini L, et al.: PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin Cancer Res 2006, 12:4080–4089.

    Article  PubMed  CAS  Google Scholar 

  23. Giles FJ, Cortes J, Jones D, et al.: MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007, 109:500–502.

    Article  PubMed  CAS  Google Scholar 

  24. Mortlock AA, Foote KM, Heron NM, et al.: Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of aurora B kinase. J Med Chem 2007, 50:2213–2224.

    Article  PubMed  CAS  Google Scholar 

  25. Wilkinson RW, Odedra R, Heaton SP, et al.: AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 2007, 13:3682–3688.

    Article  PubMed  CAS  Google Scholar 

  26. Jones SF, Cohen RB, Dees EC, et al.: Phase I clinical trial of MLN8054, a selective inhibitor of Aurora A kinase. J Clin Oncol 2007, 25(18S):abstract 3577.

    Google Scholar 

  27. Rubin EH, Shapiro GI, Stein MN, et al.: A phase I clinical and pharmacokinetic (PK) trial of the aurora kinase (AK) inhibitor MK-0457 in cancer patients. J Clin Oncol 2006, 24(18S):abstract 3008.

    Google Scholar 

  28. Schellens JH, Boss D, Witteveen PO, et al.: Phase I and pharmacological study of the novel aurora kinase inhibitor AZD1152. J Clin Oncol 2006, 24(18S):abstract 3008.

    Google Scholar 

  29. Eyers PA, Erikson E, Chen LG, Maller JL: A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 2003, 13:691–697.

    Article  PubMed  CAS  Google Scholar 

  30. Anderson K, Yang J, Koretke K, et al.: Binding of TPX2 to Aurora A alters substrate and inhibitor interactions. Biochemistry 2007, 46:10287–10295.

    Article  PubMed  CAS  Google Scholar 

  31. Sasayama T, Marumoto T, Kunitoku N, et al.: Over-expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and promotes mRNA polyadenylation of Cdk1 and cyclin B1. Genes Cells 2005, 10:627–638.

    Article  PubMed  CAS  Google Scholar 

  32. Groisman I, Jung MY, Sarkissian M, et al.: Translational control of the embryonic cell cycle. Cell 2002, 109:473–483.

    Article  PubMed  CAS  Google Scholar 

  33. Pugacheva EN, Jablonski SA, Hartman TR, et al.: HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 2007, 129:1351–1363.

    Article  PubMed  CAS  Google Scholar 

  34. Barr FA, Sillje HH, Nigg EA: Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 2004, 5:429–340.

    Article  PubMed  CAS  Google Scholar 

  35. Lowery DM, Lim D, Yaffe MB: Structure and function of Polo-like kinases. Oncogene 2005, 24:248–259.

    Article  PubMed  CAS  Google Scholar 

  36. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I: Polo-like kinases (Plks) and cancer. Oncogene 2005, 24:287–291.

    Article  PubMed  CAS  Google Scholar 

  37. Winkles JA, Alberts GF: Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 2005, 24:260–266.

    Article  PubMed  CAS  Google Scholar 

  38. Smith MR, Wilson ML, Hamanaka R, et al.: Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 1997, 234:397–405.

    Article  PubMed  CAS  Google Scholar 

  39. Ando K, Ozaki T, Yamamoto H, et al.: Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 2004, 279:25549–25561.

    Article  PubMed  CAS  Google Scholar 

  40. Guan R, Tapang P, Leverson JD, et al.: Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res 2005, 65:2698–2704.

    Article  PubMed  CAS  Google Scholar 

  41. Steegmaier M, Hoffmann M, Baum A, et al.: BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 2007, 17:316–322.

    Article  PubMed  CAS  Google Scholar 

  42. Sutton D, Diamond M, Faucette L, et al.: Efficacy of GSK461364, a selective Plk1 inhibitor, in human tumor xenograft models [abstract 5388]. Presented at the Annual Meeting of the American Association for Cancer Research. April 14–18, 2007; Los Angeles, CA.

  43. Erskine SG, Madden L, Hassler DF, et al.: Biochemical characterization of GSK461364: A novel, potent, and selective inhibitor of Polo-like kinase-1 (Plk1) [abstract 3257]. Presented at the Annual Meeting of the American Association for Cancer Research. April 14–18, 2007; Los Angeles, CA.

  44. Gumireddy K, Reddy MV, Cosenza SC, et al.: ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005, 7:275–286.

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt M, Bastians H: Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Update 2007, 10:62–81.

    Google Scholar 

  46. Donehower RC, Jimeno A, Li J, et al.: Phase I study of ON-01910.Na, a novel cell cycle inhibitor in adult patients with solid tumors. J Clin Oncol 2006, 24(18S):abstract 13026.

    Google Scholar 

  47. McInnes C, Mazumdar A, Mezna M, et al.: Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance. Nat Chem Biol 2006, 2:608–617.

    Article  PubMed  CAS  Google Scholar 

  48. Santamaria A, Neef R, Eberspächer U, et al.: Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 2007, 18:4024–4036.

    Article  PubMed  CAS  Google Scholar 

  49. Kothe M, Kohls D, Low S, et al.: Structure of the catalytic domain of human polo-like kinase 1. Biochemistry 2007, 46:5960–5971.

    Article  PubMed  CAS  Google Scholar 

  50. Elia AE, Cantley LC, Yaffe MB: Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 2003, 299:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  51. Warner SL, Gray PJ, Von Hoff DD: Tubulin-associated drug targets: Aurora kinases, Polo-like kinases, and others. Semin Oncol 2006, 33:436–438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Von Hoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, S.L., Stephens, B.J. & Von Hoff, D.D. Tubulin-associated proteins: Aurora and Polo-like kinases as therapeutic targets in cancer. Curr Oncol Rep 10, 122–129 (2008). https://doi.org/10.1007/s11912-008-0020-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0020-0

Keywords

Navigation