Skip to main content

Advertisement

Log in

Molecular genetics of pediatric central nervous system tumors

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Recent advances in molecular biology have enhanced our understanding of the pathogenesis of brain tumors, particularly in children. The use of molecular diagnostic tools is quickly becoming a standard component in the diagnosis and classification of brain tumors in children, in addition to providing insight leading to treatment stratification and improved outcome prediction. All new protocols involving treatments for brain tumors in children include studies of biomarkers and biologic correlates as a means to identify new targets for therapeutics and possible intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Baldwin RT, Preston-Martin S: Epidemiology of brain tumors in childhood—a review. Toxicol Appl Pharmacol 2004, 199:118–131. This article reviews the epidemiologic evidence, at times controversial, for environmental exposures and infectious agents in the pathogenesis of childhood brain tumors.

    Article  PubMed  CAS  Google Scholar 

  2. Hoffman S, Propp JM, McCarthy BJ: Temporal trends in incidence of primary brain tumors in the United States, 1985–1999. Neuro-oncology 2006, 8:27–37.

    Article  PubMed  Google Scholar 

  3. Aarsen FK, Paquier PF, Reddingius RE, et al.: Functional outcome after low-grade astrocytoma treatment in childhood. Cancer 2006, 106:396–402. As outcome continues to improve for survivors of childhood brain tumors, the long-term consequences of treatment that includes surgery, radiation, and chemotherapy are increasingly appreciated. Significant cognitive, social, and behavioral deficits are noted, depending on original tumor site, age at diagnosis, and type of therapy.

    Article  PubMed  Google Scholar 

  4. Burzynski SR, Weaver RA, Janicki T, et al.: Long-term survival of high-risk pediatric patients with primitive neuroectodermal tumors treated with antineoplastons A10 and AS2-1. Integr Cancer Ther 2005, 4:168–177.

    Article  PubMed  CAS  Google Scholar 

  5. Peterson KM, Shao C, McCarter R, et al.: An analysis of SEER data of increasing risk of secondary malignant neoplasms among long-term survivors of childhood brain tumors. Pediatr Blood Cancer 2006, 47:83–88.

    Article  PubMed  Google Scholar 

  6. Zebrack BJ, Gurney JG, Oeffinger K, et al.: Psychological outcomes in long-term survivors of childhood brain cancer: a report from the childhood cancer survivor study. J Clin Oncol 2004, 22:999–1006.

    Article  PubMed  Google Scholar 

  7. Sanoudou D, Tingby O, Ferguson-Smith MA, et al.: Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 2000, 82:1218–1222.

    Article  PubMed  CAS  Google Scholar 

  8. Sherr CJ: Principles of tumor suppression. Cell 2004, 116:235–246.

    Article  PubMed  CAS  Google Scholar 

  9. Ohgaki H, Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005, 64:479–489.

    PubMed  CAS  Google Scholar 

  10. Gutmann DH, Donahoe J, Brown T, et al.: Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 2000, 26:361–367.

    Article  PubMed  CAS  Google Scholar 

  11. Wimmer K, Eckart M, Meyer-Puttlitz B, et al.: Mutational and expression analysis of the NF1 gene argues against a role as tumor suppressor in sporadic pilocytic astrocytomas. J Neuropathol Exp Neurol 2002, 61:896–902.

    PubMed  CAS  Google Scholar 

  12. Sung T, Miller DC, Hayes RL, et al.: Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 2000, 10:249–259.

    Article  PubMed  CAS  Google Scholar 

  13. Hermanson M, Funa K, Koopmann J, et al.: Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 1996, 56:164–171.

    PubMed  CAS  Google Scholar 

  14. Rickert CH, Strater R, Kaatsch P, et al.: Pediatric highgrade astrocytomas show chromosomal imbalances distinct from adult cases. Am J Pathol 2001, 158:1525–1532.

    PubMed  CAS  Google Scholar 

  15. Khatua S, Peterson KM, Brown KM, et al.: Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 2003, 63:1865–1870.

    PubMed  CAS  Google Scholar 

  16. Broniscer A, Gajjar A: Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist 2004, 9:197–206.

    Article  PubMed  Google Scholar 

  17. Kleihues P, Louis DN, Scheithauer BW, et al.: The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 2002, 61:215–225; discussion 226–219.

    PubMed  Google Scholar 

  18. Shai R, Shi T, Kremen TJ, et al.: Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 2003, 22:4918–4923.

    Article  PubMed  CAS  Google Scholar 

  19. Mischel PS, Shai R, Shi T, et al.: Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 2003, 22:2361–2373.

    Article  PubMed  CAS  Google Scholar 

  20. Pollack IF, Finkelstein SD, Burnham J, et al.: Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 2001, 61:7404–7407.

    PubMed  CAS  Google Scholar 

  21. Cheng Y, Ng HK, Zhang SF, et al.: Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 1999, 30:1284–1290.

    Article  PubMed  CAS  Google Scholar 

  22. Rickert CH: Prognosis-related molecular markers in pediatric central nervous system tumors. J Neuropathol Exp Neurol 2004, 63:1211–1224.

    PubMed  CAS  Google Scholar 

  23. Szybka M, Bartkowiak J, Zakrzewski K, et al.: Microsatellite instability and expression of DNA mismatch repair genes in malignant astrocytic tumors from adult and pediatric patients. Clin Neuropathol 2003, 22:180–186.

    PubMed  CAS  Google Scholar 

  24. Maddrey AM, Bergeron JA, Lombardo ER, et al.: Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. J Neurooncol 2005, 72:245–253.

    Article  PubMed  Google Scholar 

  25. Pomeroy SL, Tamayo P, Gaasenbeek M, et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415:436–442. One of three recent articles that were among the first reports of gene microarray studies and gene expression profiles to partition tumor cohorts in children into subgroups that are enriched for specific mutations. Ultimately, these subgroups are correlated to patient outcome. See [32•] and [33•].

    Article  PubMed  CAS  Google Scholar 

  26. Ellison D: Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002, 28:257–282.

    Article  PubMed  CAS  Google Scholar 

  27. Waha A, Koch A, Meyer-Puttlitz B, et al.: Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol 2003, 62:1192–1201.

    PubMed  CAS  Google Scholar 

  28. Eberhart CG, Kratz JE, Schuster A, et al.: Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol 2002, 12:36–44.

    Article  PubMed  CAS  Google Scholar 

  29. Pomeroy SL, Sturla LM: Molecular biology of medulloblastoma therapy. Pediatr Neurosurg 2003, 39:299–304.

    Article  PubMed  Google Scholar 

  30. Wechsler-Reya R, Scott MP: The developmental biology of brain tumors. Annu Rev Neurosci 2001, 24:385–428.

    Article  PubMed  CAS  Google Scholar 

  31. Romer JT, Kimura H, Magdaleno S, et al.: Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell 2004, 6:229–240.

    Article  PubMed  CAS  Google Scholar 

  32. Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006, 24:1924–1931. One of three recent articles that were among the first reports of gene microarray studies and gene expression profiles to partition tumor cohorts in children into subgroups that are enriched for specific mutations. Ultimately, these subgroups are correlated to patient outcome. See [25•] and [33•].

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez-Teijeiro A, Betensky RA, Sturla LM, et al.: Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. J Clin Oncol 2004, 22:994–998. One of three recent articles that were among the first reports of gene microarray studies and gene expression profiles to partition tumor cohorts in children into subgroups that are enriched for specific mutations. Ultimately, these subgroups are correlated to patient outcome. See [25•] and [32•].

    Article  PubMed  CAS  Google Scholar 

  34. Rorke LB, Packer R, Biegel J: Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neurooncol 1995, 24:21–28.

    Article  PubMed  CAS  Google Scholar 

  35. Reddy AT: Atypical teratoid/rhabdoid tumors of the central nervous system. J Neurooncol 2005, 75:309–313.

    Article  PubMed  CAS  Google Scholar 

  36. Biegel JA, Tan L, Zhang F, et al.: Alterations of the hSNF5/ INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res 2002, 8:3461–3467.

    PubMed  CAS  Google Scholar 

  37. Burger PC, Yu IT, Tihan T, et al.: Atypical teratoid/ rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study. Am J Surg Pathol 1998, 22:1083–1092.

    Article  PubMed  CAS  Google Scholar 

  38. Biegel JA: Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus 2006, 20:E11.

    Article  PubMed  Google Scholar 

  39. Gupta N: Choroid plexus tumors in children. Neurosurg Clin N Am 2003, 14:621–631.

    Article  PubMed  Google Scholar 

  40. Kamaly-Asl ID, Shams N, Taylor MD: Genetics of choroid plexus tumors. Neurosurg Focus 2006, 20:E10.

    PubMed  Google Scholar 

  41. Krutilkova V, Trkova M, Fleitz J, et al.: Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer 2005, 41:1597–1603.

    Article  PubMed  CAS  Google Scholar 

  42. Zakrzewska M, Wojcik I, Zakrzewski K, et al.: Mutational analysis of hSNF5/INI1 and TP53 genes in choroid plexus carcinomas. Cancer Genet Cytogenet 2005, 156:179–182.

    Article  PubMed  CAS  Google Scholar 

  43. Taggard DA, Menezes AH: Three choroid plexus papillomas in a patient with Aicardi syndrome. A case report. Pediatr Neurosurg 2000, 33:219–223.

    Article  PubMed  CAS  Google Scholar 

  44. Zajac V, Kirchhoff T, Levy ER, et al.: Characterisation of X;17(q12;p13) translocation breakpoints in a female patient with hypomelanosis of Ito and choroid plexus papilloma. Eur J Hum Genet 1997, 5:61–68.

    PubMed  CAS  Google Scholar 

  45. Sevenet N, Lellouch-Tubiana A, Schofield D, et al.: Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet 1999, 8:2359–2368.

    Article  PubMed  CAS  Google Scholar 

  46. Gessi M, Giangaspero F, Pietsch T: Atypical teratoid/rhabdoid tumors and choroid plexus tumors: when genetics “surprise” pathology. Brain Pathol 2003, 13:409–414.

    Article  PubMed  Google Scholar 

  47. Judkins AR, Burger PC, Hamilton RL, et al.: INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 2005, 64:391–397. AT/RT is characterized by deletions and/or mutations of the INI1 tumor-suppressor gene. Mutations of INI1 have been reported in some choroid plexus carcinoma. This article reports the use of immunohistochemistry for INI1 to distinguish between AT/RT and choroid plexus carcinoma.

    PubMed  CAS  Google Scholar 

  48. Rickert CH, Wiestler OD, Paulus W: Chromosomal imbalances in choroid plexus tumors. Am J Pathol 2002, 160:1105–1113.

    PubMed  Google Scholar 

  49. Lamszus K, Lachenmayer L, Heinemann U, et al.: Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 2001, 91:803–808.

    Article  PubMed  CAS  Google Scholar 

  50. Dyer S, Prebble E, Davison V, et al.: Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 2002, 161:2133–2141.

    PubMed  CAS  Google Scholar 

  51. Huang B, Starostik P, Schraut H, et al.: Human ependymomas reveal frequent deletions on chromosomes 6 and 9. Acta Neuropathol (Berl) 2003, 106:357–362.

    Article  CAS  Google Scholar 

  52. Rickert CH, Korshunov A, Paulus W: Chromosomal imbalances in clear cell ependymomas. Mod Pathol 2006.

  53. Santi M, Quezado M, Ronchetti R, Rushing EJ: Analysis of chromosome 7 in adult and pediatric ependymomas using chromogenic in situ hybridization. J Neurooncol 2005, 72:25–28.

    Article  PubMed  CAS  Google Scholar 

  54. Betensky RA, Louis DN, Cairncross JG: Influence of unrecognized molecular heterogeneity on randomized clinical trials. J Clin Oncol 2002, 20:2495–2499.

    Article  PubMed  Google Scholar 

  55. Rickert CH, Paulus W: Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv System 2001, 17:503–511.

    Article  CAS  Google Scholar 

  56. http://www.cancer.gov/clinical trials. Accessed 8/25/06.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole J. Ullrich MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, N.J., Pomeroy, S.L. Molecular genetics of pediatric central nervous system tumors. Curr Oncol Rep 8, 423–429 (2006). https://doi.org/10.1007/s11912-006-0070-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-006-0070-0

Keywords

Navigation