Skip to main content

Advertisement

Log in

Primary Age-Related Tauopathy (PART): Addressing the Spectrum of Neuronal Tauopathic Changes in the Aging Brain

  • Dementia (K.S. Marder, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Primary age-related tauopathy (PART) was recently proposed as a pathologic diagnosis for brains that harbor neurofibrillary tangles (Braak stage ≤ 4) with little, if any, amyloid burden. We sought to review the clinicopathologic findings related to PART.

Recent Findings

Most adult human brains show at least focal tauopathic changes, and the majority of individuals with PART do not progress to dementia. Older age and cognitive impairment correlate with increased Braak stage, and multivariate analyses suggest that the rate of cognitive decline is less than matched patients with Alzheimer disease (AD). It remains unclear whether PART is a distinct tauopathic entity separate from AD or rather represents an earlier histologic stage of AD.

Summary

Cognitive decline in PART is usually milder than AD and correlates with tauopathic burden. Biomarker and ligand-based radiologic studies will be important to define PART antemortem and prospectively follow its natural history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. den Dunnen WF, Brouwer WH, Bijlard E, Kamphuis J, van Linschoten K, Eggens-Meijer E, et al. No disease in the brain of a 115-year-old woman. Neurobiol Aging. 2008;29(8):1127–32. https://doi.org/10.1016/j.neurobiolaging.2008.04.010.

    Article  Google Scholar 

  2. Hickman RA, Faustin A, Wisniewski T. Alzheimer disease and its growing epidemic: risk factors, biomarkers, and the urgent need for therapeutics. Neurol Clin. 2016;34(4):941–53. https://doi.org/10.1016/j.ncl.2016.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  3. James BD, Bennett DA. Causes and patterns of dementia: an update in the era of redefining Alzheimer’s disease. Annu Rev Public Health. 2019;40:65–84. https://doi.org/10.1146/annurev-publhealth-040218-043758.

    Article  PubMed  Google Scholar 

  4. Rabinovici GD. Late-onset Alzheimer disease. Continuum (Minneap Minn). 2019;25(1):14–33. https://doi.org/10.1212/con.0000000000000700.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357(9251):169–75. https://doi.org/10.1016/s0140-6736(00)03589-3.

    Article  Google Scholar 

  6. Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol. 2003;62(11):1087–95. https://doi.org/10.1093/jnen/62.11.1087.

    Article  CAS  PubMed  Google Scholar 

  7. Elobeid A, Libard S, Leino M, Popova SN, Alafuzoff I. Altered proteins in the aging brain. J Neuropathol Exp Neurol. 2016;75(4):316–25. https://doi.org/10.1093/jnen/nlw002.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tomlinson BE, Blessed G, Roth M. Observations on the brains of non-demented old people. J Neurol Sci. 1968;7(2):331–56. https://doi.org/10.1016/0022-510x(68)90154-8.

    Article  CAS  PubMed  Google Scholar 

  9. Ganz AB, Beker N, Hulsman M, Sikkes S, Netherlands Brain B, Scheltens P, et al. Neuropathology and cognitive performance in self-reported cognitively healthy centenarians. Acta Neuropathol Commun. 2018;6(1):64. https://doi.org/10.1186/s40478-018-0558-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizutani T, Shimada H. Neuropathological background of twenty-seven centenarian brains. J Neurol Sci. 1992;108(2):168–77.

    Article  CAS  PubMed  Google Scholar 

  11. Itoh Y, Yamada M, Suematsu N, Matsushita M, Otomo E. An immunohistochemical study of centenarian brains: a comparison. J Neurol Sci. 1998;157(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  12. Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci. 1986;83(11):4040–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179(2):312–39. https://doi.org/10.1016/j.cell.2019.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;121(2):171–81. https://doi.org/10.1007/s00401-010-0789-4.

    Article  PubMed  Google Scholar 

  15. •• Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960–9. https://doi.org/10.1097/NEN.0b013e318232a379Although nearly a decade old, this monumental paper describes the frequency and distribution of tauopathic changes and amyloid burden in over 2300 brains ranging from infancy to 100 years of age. This work demonstrated that amyloid deposition occurs at a much later time point than the onset of tauopathic changes.

    Article  CAS  PubMed  Google Scholar 

  16. Grinberg LT, Rub U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol. 2009;35(4):406–16. https://doi.org/10.1111/j.1365-2990.2009.00997.x.

    Article  CAS  PubMed  Google Scholar 

  17. Elobeid A, Soininen H, Alafuzoff I. Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol. 2012;123(1):97–104. https://doi.org/10.1007/s00401-011-0906-z.

    Article  CAS  PubMed  Google Scholar 

  18. Attems J, Thomas A, Jellinger K. Correlations between cortical and subcortical tau pathology. Neuropathol Appl Neurobiol. 2012;38(6):582–90. https://doi.org/10.1111/j.1365-2990.2011.01244.x.

    Article  CAS  PubMed  Google Scholar 

  19. Kovacs GG, Milenkovic I, Wohrer A, Hoftberger R, Gelpi E, Haberler C, et al. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol. 2013;126(3):365–84. https://doi.org/10.1007/s00401-013-1157-y.

    Article  CAS  PubMed  Google Scholar 

  20. Bancher C, Leitner H, Jellinger K, Eder H, Setinek U, Fischer P, et al. On the relationship between measles virus and Alzheimer neurofibrillary tangles in subacute sclerosing panencephalitis. Neurobiol Aging. 1996;17(4):527–33. https://doi.org/10.1016/0197-4580(96)00069-3.

    Article  CAS  PubMed  Google Scholar 

  21. Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM. Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol. 1979;5(3):288–94. https://doi.org/10.1002/ana.410050311.

    Article  CAS  PubMed  Google Scholar 

  22. McKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol (Zurich, Switzerland). 2015;25(3):350–64. https://doi.org/10.1111/bpa.12248.

    Article  CAS  Google Scholar 

  23. Auer IA, Schmidt ML, Lee VM, Curry B, Suzuki K, Shin RW, et al. Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer’s disease. Acta Neuropathol. 1995;90(6):547–51. https://doi.org/10.1007/bf00318566.

    Article  CAS  PubMed  Google Scholar 

  24. Turk KW, Budson AE. Chronic traumatic encephalopathy. Continuum (Minneap Minn). 2019;25(1):187–207. https://doi.org/10.1212/con.0000000000000686.

    Article  Google Scholar 

  25. Itoh, Yamada M, Yoshida R, Suematsu N, Oka T, Matsushita M, et al. Dementia characterized by abundant neurofibrillary tangles and scarce senile plaques: a quantitative pathological study. Eur Neurol. 1996;36(2):94–7. https://doi.org/10.1159/000117216.

    Article  CAS  PubMed  Google Scholar 

  26. Jellinger KA, Bancher C. Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol. 1998;8(2):367–76. https://doi.org/10.1111/j.1750-3639.1998.tb00160.x.

    Article  CAS  PubMed  Google Scholar 

  27. Ulrich J. Abundant neurofibrillary tangles without senile plaques in a subset of patients with senile dementia. Neurodegeneration. 1992;1:257–64.

    Google Scholar 

  28. Bancher C, Jellinger KA. Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects. Acta Neuropathol. 1994;88(6):565–70. https://doi.org/10.1007/bf00296494.

    Article  CAS  PubMed  Google Scholar 

  29. Yamada M. Senile dementia of the neurofibrillary tangle type (tangle-only dementia): neuropathological criteria and clinical guidelines for diagnosis. Neuropathology. 2003;23(4):311–7. https://doi.org/10.1046/j.1440-1789.2003.00522.x.

    Article  PubMed  Google Scholar 

  30. Ikeda K, Akiyama H, Arai T, Oda T, Kato M, Iseki E, et al. Clinical aspects of ‘senile dementia of the tangle type’-- a subset of dementia in the senium separable from late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord. 1999;10(1):6–11. https://doi.org/10.1159/000017091.

    Article  CAS  PubMed  Google Scholar 

  31. •• Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755–66. https://doi.org/10.1007/s00401-014-1349-0This consensus paper introduced the concept of PART and outlined the guidelines/criteria for rendering the diagnosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jellinger K, Attems J. Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol. 2007;113(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  33. Quintas-Neves M, Teylan MA, Besser L, Soares-Fernandes J, Mock CN, Kukull WA, et al. Magnetic resonance imaging brain atrophy assessment in primary age-related tauopathy (PART). Acta Neuropathol Commun. 2019;7(1):204. https://doi.org/10.1186/s40478-019-0842-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59. https://doi.org/10.1007/bf00308809.

    Article  CAS  PubMed  Google Scholar 

  35. •• Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 2017;133(5):705–15. https://doi.org/10.1007/s00401-017-1681-2A clinicopathologic study of definite PART that incorporated both pathology, neuropsychologic testing, and neuroimaging. The authors describe correlation of Braak stage with cognitive impairment and show an association between semantic memory impairment and anterior hippocampal atrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. • Jellinger KA. Different patterns of hippocampal tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. 2018. https://doi.org/10.1007/s00401-018-1894-zThis letter outlines an important pathologic difference in the neuropathology of PART and AD that the tauopathic burden is greater in CA2 than CA1, contrary to what is usually seen in classical AD.

  37. McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  38. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):1168–70.

    Article  CAS  PubMed  Google Scholar 

  39. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800. https://doi.org/10.1212/wnl.58.12.1791.

    Article  PubMed  Google Scholar 

  40. •• Duyckaerts C, Braak H, Brion J-P, Buée L, Del Tredici K, Goedert M, et al. PART is part of Alzheimer disease. Acta Neuropathol. 2015;129(5):749–56. https://doi.org/10.1007/s00401-015-1390-7This article puts forth the argument and provides evidence to suggest that PART and AD rest on a spectrum and that PART is an earlier stage of AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Besser LM, Mock C, Teylan MA, Hassenstab J, Kukull WA, Crary JF. Differences in cognitive impairment in primary age-related Tauopathy versus Alzheimer disease. J Neuropathol Exp Neurol. 2019;78(3):219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neltner JH, Abner EL, Jicha GA, Schmitt FA, Patel E, Poon LW, et al. Brain pathologies in extreme old age. Neurobiol Aging. 2016;37:1–11.

    Article  PubMed  Google Scholar 

  43. Kovacs GG, Alafuzoff I, Al-Sarraj S, Arzberger T, Bogdanovic N, Capellari S, et al. Mixed brain pathologies in dementia: the BrainNet Europe consortium experience. Dement Geriatr Cogn Disord. 2008;26(4):343–50. https://doi.org/10.1159/000161560.

    Article  PubMed  Google Scholar 

  44. Alafuzoff I. Alzheimer’s disease-related lesions. J Alzheimers Dis. 2013;33(Suppl 1):S173–9. https://doi.org/10.3233/jad-2012-129024.

    Article  PubMed  Google Scholar 

  45. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain J Neurol. 2018;141(7):2181–93. https://doi.org/10.1093/brain/awy146.

    Article  Google Scholar 

  46. Kovacs GG, Ferrer I, Grinberg LT, Alafuzoff I, Attems J, Budka H, et al. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol. 2016;131(1):87–102. https://doi.org/10.1007/s00401-015-1509-x.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrer I, Santpere G, van Leeuwen FW. Argyrophilic grain disease. Brain J Neurol. 2008;131(Pt 6):1416–32. https://doi.org/10.1093/brain/awm305.

    Article  Google Scholar 

  48. Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y, et al. Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol. 2004;63(9):911–8. https://doi.org/10.1093/jnen/63.9.911.

    Article  PubMed  Google Scholar 

  49. Braak H, Braak E. Argyrophilic grain disease: frequency of occurrence in different age categories and neuropathological diagnostic criteria. J Neural Transm (Vienna, Austria : 1996). 1998;105(8–9):801–19. https://doi.org/10.1007/s007020050096.

    Article  CAS  Google Scholar 

  50. Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, et al. “New old pathologies”: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). J Neuropathol Exp Neurol. 2016;75(6):482–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wennberg AM, Whitwell JL, Tosakulwong N, Weigand SD, Murray ME, Machulda MM, et al. The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiol Aging. 2019;77:26–36. https://doi.org/10.1016/j.neurobiolaging.2019.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arnold SJ, Dugger BN, Beach TG. TDP-43 deposition in prospectively followed, cognitively normal elderly individuals: correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathol. 2013;126(1):51–7. https://doi.org/10.1007/s00401-013-1110-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilson AC, Dugger BN, Dickson DW, Wang DS. TDP-43 in aging and Alzheimer’s disease—a review. Int J Clin Exp Pathol. 2011;4(2):147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Arai T, Mackenzie IR, Hasegawa M, Nonoka T, Niizato K, Tsuchiya K, et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol. 2009;117(2):125–36. https://doi.org/10.1007/s00401-008-0480-1.

    Article  CAS  PubMed  Google Scholar 

  55. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol (Zurich, Switzerland). 2017;27(4):472–9. https://doi.org/10.1111/bpa.12424.

    Article  CAS  Google Scholar 

  56. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 2014;127(3):441–50. https://doi.org/10.1007/s00401-013-1211-9.

    Article  CAS  PubMed  Google Scholar 

  57. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 2016;131(4):571–85. https://doi.org/10.1007/s00401-016-1537-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang X, Sun B, Wang X, Lu H, Shao F, Rozemuller AJM, et al. Phosphorylated TDP-43 staging of primary age-related tauopathy. Neurosci Bull. 2019;35(2):183–92. https://doi.org/10.1007/s12264-018-0300-0.

    Article  CAS  PubMed  Google Scholar 

  59. Markesbery WR, Jicha GA, Liu H, Schmitt FA. Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol. 2009;68(7):816–22. https://doi.org/10.1097/NEN.0b013e3181ac10a7.

    Article  PubMed  Google Scholar 

  60. Gibb WR. Idiopathic Parkinson’s disease and the Lewy body disorders. Neuropathol Appl Neurobiol. 1986;12(3):223–34. https://doi.org/10.1111/j.1365-2990.1986.tb00136.x.

    Article  CAS  PubMed  Google Scholar 

  61. Hamilton RL. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000;10(3):378–84. https://doi.org/10.1111/j.1750-3639.2000.tb00269.x.

    Article  CAS  PubMed  Google Scholar 

  62. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204. https://doi.org/10.1212/01.wnl.0000271090.28148.24.

    Article  PubMed  Google Scholar 

  63. Kapasi A, Schneider JA. Vascular contributions to cognitive impairment, clinical Alzheimer’s disease, and dementia in older persons. Biochim Biophys Acta. 2016;1862(5):878–86. https://doi.org/10.1016/j.bbadis.2015.12.023.

    Article  CAS  PubMed  Google Scholar 

  64. Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease—lessons from pathology. BMC Med. 2014;12:206. https://doi.org/10.1186/s12916-014-0206-2.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Santacruz K, et al. Brains with medial temporal lobe neurofibrillary tangles but no neuritic amyloid plaques are a diagnostic dilemma but may have pathogenetic aspects distinct from Alzheimer disease. J Neuropathol Exp Neurol. 2009;68(7):774–84. https://doi.org/10.1097/NEN.0b013e3181aacbe9.

    Article  PubMed  Google Scholar 

  66. Jefferson-George KS, Wolk DA, Lee EB, McMillan CT. Cognitive decline associated with pathological burden in primary age-related tauopathy. Alzheimers Dement’. 2017;13(9):1048–53.

    Article  Google Scholar 

  67. Besser LM, Crary JF, Mock C, Kukull WA. Comparison of symptomatic and asymptomatic persons with primary age-related tauopathy. Neurology. 2017;89(16):1707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bell WR, An Y, Kageyama Y, English C, Rudow GL, Pletnikova O, et al. Neuropathologic, genetic, and longitudinal cognitive profiles in primary age-related tauopathy (PART) and Alzheimer’s disease. Alzheimers Dement. 2019;15(1):8–16. https://doi.org/10.1016/j.jalz.2018.07.215.

    Article  PubMed  Google Scholar 

  69. Teylan M, Besser LM, Crary JF, Mock C, Gauthreaux K, Thomas NM, et al. Clinical diagnoses among individuals with primary age-related tauopathy versus Alzheimer’s neuropathology. Lab Investig. 2019;99(7):1049–55.

    Article  PubMed  Google Scholar 

  70. • Teylan M, Mock C, Gauthreaux K, Chen YC, Chan KCG, Hassenstab J, et al. Cognitive trajectory in mild cognitive impairment due to primary age-related tauopathy. Brain J Neurol. 2020;143(2):611–21. https://doi.org/10.1093/brain/awz403This paper compares individuals with PART and matched individuals with AD and shows a slower cognitive decline in PART than in AD.

    Article  Google Scholar 

  71. Mock C, Teylan M, Beecham G, Besser L, Cairns NJ, Crary JF, et al. The utility of the National Alzheimer’s Coordinating Center’s Database for the rapid assessment of evolving neuropathologic conditions. Alzheimer Dis Assoc Disord. 2020;34:105–11. https://doi.org/10.1097/wad.0000000000000380.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kryscio R, Abner E, Jicha G, Nelson P, Smith C, Van Eldik L, et al. Self-reported memory complaints: a comparison of demented and unimpaired outcomes. J Prev Alzheimer’s Dis. 2016;3(1):13.

    CAS  Google Scholar 

  73. Santa-Maria I, Haggiagi A, Liu X, Wasserscheid J, Nelson PT, Dewar K, et al. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol. 2012;124(5):693–704. https://doi.org/10.1007/s00401-012-1017-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jack CR Jr, Knopman DS, Chetelat G, Dickson D, Fagan AM, Frisoni GB, et al. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat Rev Neurol. 2016;12(2):117–24. https://doi.org/10.1038/nrneurol.2015.251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jack CR Jr, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71(6):765–75. https://doi.org/10.1002/ana.22628.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jack CR Jr, Wiste HJ, Weigand SD, Rocca WA, Knopman DS, Mielke MM, et al. Age-specific population frequencies of cerebral beta-amyloidosis and neurodegeneration among people with normal cognitive function aged 50-89 years: a cross-sectional study. Lancet Neurol. 2014;13(10):997–1005. https://doi.org/10.1016/s1474-4422(14)70194-2.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Burnham SC, Bourgeat P, Dore V, Savage G, Brown B, Laws S, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 2016;15(10):1044–53. https://doi.org/10.1016/s1474-4422(16)30125-9.

    Article  PubMed  Google Scholar 

  78. Soldan A, Pettigrew C, Fagan AM, Schindler SE, Moghekar A, Fowler C, et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology. 2019;92(14):e1567–e79. https://doi.org/10.1212/wnl.0000000000007248.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Caroli A, Prestia A, Galluzzi S, Ferrari C, van der Flier WM, Ossenkoppele R, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression. Neurology. 2015;84(5):508–15. https://doi.org/10.1212/wnl.0000000000001209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wisse LEM, Butala N, Das SR, Davatzikos C, Dickerson BC, Vaishnavi SN, et al. Suspected non-AD pathology in mild cognitive impairment. Neurobiol Aging. 2015;36(12):3152–62. https://doi.org/10.1016/j.neurobiolaging.2015.08.029.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Weigand AJ, Bangen KJ, Thomas KR, Delano-Wood L, Gilbert PE, Brickman AM, et al. Is tau in the absence of amyloid on the Alzheimer’s continuum?: A study of discordant PET positivity. Brain Commun. 2020;2(1):fcz046.

    Article  PubMed  Google Scholar 

  82. Price JL, Morris JC. Tangles and plaques in nondemented aging and "preclinical" Alzheimer’s disease. Ann Neurol. 1999;45(3):358–68. https://doi.org/10.1002/1531-8249(199903)45:3<358::aid-ana12>3.0.co;2-x.

    Article  CAS  PubMed  Google Scholar 

  83. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323. https://doi.org/10.1016/j.jalz.2016.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ehrenberg AJ, Nguy AK, Theofilas P, Dunlop S, Suemoto CK, Di Lorenzo Alho AT, et al. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer’s disease. Neuropathol Appl Neurobiol. 2017;43(5):393–408. https://doi.org/10.1111/nan.12387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andres-Benito P, Fernandez-Duenas V, Carmona M, Escobar LA, Torrejon-Escribano B, Aso E, et al. Locus coeruleus at asymptomatic early and middle Braak stages of neurofibrillary tangle pathology. Neuropathol Appl Neurobiol. 2017;43(5):373–92. https://doi.org/10.1111/nan.12386.

    Article  CAS  PubMed  Google Scholar 

  86. Pires G, McElligott S, Drusinsky S, Halliday G, Potier MC, Wisniewski T, et al. Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer’s disease and not in other tauopathies. Acta Neuropathol Commun. 2019;7(1):195. https://doi.org/10.1186/s40478-019-0848-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bancher C, Egensperger R, Kösel S, Jellinger K, Graeber MB. Low prevalence of apolipoprotein E ε4 allele in the neurofibrillary tangle predominant form of senile dementia. Acta Neuropathol. 1997;94(5):403–9. https://doi.org/10.1007/s004010050726.

    Article  CAS  PubMed  Google Scholar 

  88. Janocko NJ, Brodersen KA, Soto-Ortolaza AI, Ross OA, Liesinger AM, Duara R, et al. Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathol. 2012;124(5):681–92. https://doi.org/10.1007/s00401-012-1044-y.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011;10(9):785–96. https://doi.org/10.1016/s1474-4422(11)70156-9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gibbons GS, Lee VMY, Trojanowski JQ. Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol. 2019;76(1):101–8. https://doi.org/10.1001/jamaneurol.2018.2505.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Esiri MM. Ageing and the brain. J Pathol. 2007;211(2):181–7. https://doi.org/10.1002/path.2089.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jean-Paul Vonsattel for useful comments and providing the macroscopic images of Fig. 1a, b. We extend our sincere gratitude to all of the patients, families, and caregivers for their generosity in brain donation for neurodegenerative research.

Funding

RAH is supported by grant funding from the Huntington Disease Society of America and Hereditary Disease Foundation. This review is supported by P50 AG008702 (PI Scott Small, MD) and P30AG066512 (TW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Hickman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dementia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickman, R.A., Flowers, X.E. & Wisniewski, T. Primary Age-Related Tauopathy (PART): Addressing the Spectrum of Neuronal Tauopathic Changes in the Aging Brain. Curr Neurol Neurosci Rep 20, 39 (2020). https://doi.org/10.1007/s11910-020-01063-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01063-1

Keywords

Navigation