Skip to main content
Log in

Multimodal CT in Acute Stroke

  • Stroke (H.C. Diener, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Multimodal CT imaging (non-contrast CT, NCCT; CT angiography, CTA; and CT Perfusion, CTP) is central to acute ischemic stroke diagnosis and treatment. We reviewed the purpose and interpretation of each component of multimodal CT, as well as the evidence for use in routine care.

Recent Findings

Acute stroke thrombolysis can be administered immediately following NCCT in acute ischemic stroke patients assessed within 4.5 h of symptom onset. Definitive identification of a large vessel occlusion (LVO) requires vascular imaging, which is easily achieved with CTA. This is critical, as the standard of care for LVO within 6 h of onset is now endovascular thrombectomy (EVT). CTA source images can also be used to estimate the efficacy of collateral flow in LVO patients. The final component (CTP) permits a more accurate assessment of the extent of the ischemic penumbra. Complete multimodal CT, including objective penumbral measurement with CTP, has been used to extend the EVT window to 24 h. There is also randomized controlled trial evidence for extension of the IV thrombolysis window to 9 h with multimodal CT. Although there have been attempts to assess for responders to reperfusion strategies beyond 6 h (“late window”) using collateral grades, the only evidence for treatment of this group of patients is based on selection using multimodal CT including CTP. The development of fully automated software providing quantitative ischemic penumbral and core volumes has facilitated the adoption of CTP and complete multimodal CT into routine clinical use.

Summary

Multimodal CT is a powerful imaging algorithm that is central to current ischemic stroke patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Butcher KS, Lee SB, Parsons MW, Allport L, Fink J, Tress B, et al. Differential prognosis of isolated cortical swelling and hypoattenuation on CT in acute stroke. Stroke. 2007;38(3):941–7.

    Article  PubMed  Google Scholar 

  2. Dzialowski I, Weber J, Doerfler A, Forsting M, von Kummer R. Brain tissue water uptake after middle cerebral artery occlusion assessed with CT. J Neuroimaging. 2004;14(1):42–8.

    Article  PubMed  Google Scholar 

  3. Schramm P, Schellinger PD, Fiebach JB, Heiland S, Jansen O, Knauth M, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke. 2002;33(10):2426–32.

    Article  PubMed  Google Scholar 

  4. Barber PA, Darby DG, Desmond PM, Gerraty RP, Yang Q, Li T, et al. Identification of major ischemic change. Diffusion-weighted imaging versus computed tomography. Stroke. 1999;30(10):2059–65.

    Article  CAS  PubMed  Google Scholar 

  5. Fiebach JB, Schellinger PD, Jansen O, Meyer M, Wilde P, Bender J, et al. CT and Diffusion-Weighted MR Imaging in Randomized Order. Stroke. 2002;33(9).

    Article  CAS  PubMed  Google Scholar 

  6. Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355(9216):1670–4.

    Article  CAS  PubMed  Google Scholar 

  7. Phan TG, Donnan GA, Koga M, Mitchell LA, Molan M, Fitt G, et al. The ASPECTS template is weighted in favor of the striatocapsular region. NeuroImage. 2006;31(2):477–81.

    Article  PubMed  Google Scholar 

  8. Pexman JHW, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon ME, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for Assessing CT Scans in Patients with Acute Stroke. Am J Neuroradiol. 2001:22(8).

  9. Schröder J, Thomalla G. A critical review of Alberta stroke program early CT score for evaluation of acute stroke imaging. Front Neurol. 2016;7:245.

    PubMed  Google Scholar 

  10. Bal S, Bhatia R, Menon BK, Shobha N, Puetz V, Dzialowski I, et al. Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke. Int J Stroke. 2015;10(1):55–60.

    Article  PubMed  Google Scholar 

  11. Phan TG, Donnan GA, Koga M, Mitchell LA, Molan M, Fitt G, et al. Assessment of suitability of thrombolysis in middle cerebral artery infarction: a proof of concept study of a stereologically-based technique. Cerebrovasc Dis. 2007;24(4):321–7.

    Article  PubMed  Google Scholar 

  12. Pomerantz SR, Harris GJ, Desai HJ, Lev MH. Computed tomography angiography and computed tomography perfusion in ischemic stroke: a step-by-step approach to image acquisition and three-dimensional postprocessing. Semin Ultrasound CT MR. 2006;27(3):243–70.

    Article  PubMed  Google Scholar 

  13. Boulanger J, Lindsay M, Gubitz G, Smith E, Stotts G, Foley N, et al. Canadian stroke best practice recommendations for acute stroke management: Prehospital, Emergency Department, and Acute Inpatient Stroke Care, 6th Edition, Update 2018. Int J Stroke. 2018;13(9):949–84.

    Article  CAS  PubMed  Google Scholar 

  14. Forsting M. CTA of the ICA bifurcation and intracranial vessels. Eur Radiol. 2005;15(Suppl 4):D25–7.

    Article  PubMed  Google Scholar 

  15. •• Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31 This is the HERMES group meta-analysis of the five pivotal EVT trials, which provides conclusive evidence of the efficacy of EVT over standard care within 6 hours of symtom onset, in patients selected using NCCT and CTA.

    Article  PubMed  Google Scholar 

  16. Sylaja PN, Dzialowski I, Puetz V, Eliasziw M, Hill MD, Krol A, et al. Does intravenous rtPA benefit patients in the absence of CT angiographically visible intracranial occlusion? Neurol India. 2009;57(6):739–43.

    Article  CAS  PubMed  Google Scholar 

  17. Ajili N, Decroix JP, Preda C, Labreuche J, Lopez D, Bejot Y, et al. Impact of thrombolysis in acute ischaemic stroke without occlusion: an observational comparative study. Eur J Neurol. 2016;23(8):1380–6.

    Article  CAS  PubMed  Google Scholar 

  18. Fang X-H, Wang W-H, Zhang X-Q, Liu H-J, Zhang H-M, Qin X-M, et al. Incidence and survival of symptomatic lacunar infarction in a Beijing population: a 6-year prospective study. Eur J Neurol. 2012;19(8):1114–20.

    Article  PubMed  Google Scholar 

  19. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32(12):2735–40.

    Article  CAS  PubMed  Google Scholar 

  20. Hoksbergen AW, Fülesdi B, Legemate DA, Csiba L. Collateral configuration of the circle of Willis: transcranial color-coded duplex ultrasonography and comparison with postmortem anatomy. Stroke. 2000;31(6):1346–51.

    Article  CAS  PubMed  Google Scholar 

  21. Christoforidis GA, Mohammad Y, Kehagias D, Avutu B, Slivka AP. Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. Am J Neuroradiol. 2005;26(7).

  22. Tariq N, Khatri R. Leptomeningeal collaterals in acute ischemic stroke. Journal of vascular and interventional neurology. 2008;1(4):91–5.

    PubMed  PubMed Central  Google Scholar 

  23. Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84.

    Article  PubMed  Google Scholar 

  24. Miteff F, Levi CR, Bateman GA, Spratt N, McElduff P, Parsons MW. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain. 2009;132(8):2231–8.

    Article  PubMed  Google Scholar 

  25. Kucinski T, Koch C, Eckert B, Becker V, Krömer H, Heesen C, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology. 2003;45(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  26. Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol. 2007;61(6):533–43.

    Article  PubMed  Google Scholar 

  27. Kim JJ, Fischbein NJ, Lu Y, Pham D, Dillon WP. Regional angiographic grading system for collateral flow. Stroke. 2004;35(6):1340–4.

    Article  PubMed  Google Scholar 

  28. Higashida RT, Furlan AJ. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34(8).

    Article  Google Scholar 

  29. Maas MB, Lev MH, Ay H, Singhal AB, Greer DM, Smith WS, et al. Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke. 2009;40(9):3001–5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lima FO, Furie KL, Silva GS, Lev MH, Camargo ECS, Singhal AB, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke. 2010;41(10):2316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Menon BK, Smith EE, Modi J, Patel SK, Bhatia R, Watson TWJ, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR. Am J Neuroradiol. 2011;32(9):1640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan IYL, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR. Am J Neuroradiol. 2009;30(3):525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeo LLL, Paliwal P, Teoh HL, Seet RC, Chan BP, Ting E, et al. Assessment of intracranial collaterals on CT angiography in anterior circulation acute ischemic stroke. Am J Neuroradiol. 2015;36(2):289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.

    Article  CAS  PubMed  Google Scholar 

  35. Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015;275(2):510–20.

    Article  PubMed  Google Scholar 

  36. d’Esterre CD, Trivedi A, Pordeli P, Boesen M, Patil S, Hwan Ahn S, et al. Regional comparison of multiphase computed tomographic angiography and computed tomographic perfusion for prediction of tissue fate in ischemic stroke. Stroke. 2017;48(4).

    Article  PubMed  Google Scholar 

  37. Liebeskind DS, Cotsonis GA, Saver JL, Lynn MJ, Cloft HJ, Chimowitz MI, et al. Collateral circulation in symptomatic intracranial atherosclerosis. J Cereb Blood Flow Metab. 2011;31(5):1293–301.

    Article  PubMed  Google Scholar 

  38. Schoellnast H, Tillich M, Deutschmann MJ, Deutschmann HA, Schaffler GJ, Portugaller HR. Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush. Investig Radiol. 2004;39(1):20–6.

    Article  Google Scholar 

  39. Smit EJ, Vonken EJ, van Seeters T, Dankbaar JW, van der Schaaf IC, Kappelle LJ, et al. Timing-invariant imaging of collateral vessels in acute ischemic stroke. Stroke. 2013;44(8):2194–9.

    Article  CAS  PubMed  Google Scholar 

  40. Reid M, Famuyide AO, Forkert ND, Sahand Talai A, Evans JW, Sitaram A, et al. Accuracy and reliability of multiphase CTA perfusion for identifying ischemic core. Clinical Neuroradiol. 2018. https://doi.org/10.1007/s00062-018-0717-x. Accessed 7 July 2019.

  41. Schregel K, Tsogkas I, Peter C, Zapf A, Behme D, Schnieder M, et al. Outcome prediction using perfusion parameters and collateral scores of multi-phase and single-phase CT angiography in acute stroke: need for one, two, three, or thirty scans? J Stroke. 2018;20(3):362–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maier IL, Scalzo F, Leyhe JR, Schregel K, Behme D, Tsogkas I, et al. Validation of collateral scoring on flat-detector multiphase CT angiography in patients with acute ischemic stroke. Meckel S, editor. PLos One. 2018;13(8):e0202592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wintermark M, Maeder P, Thiran J-P, Schnyder P, Meuli R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol. 2001;11(7):1220–30.

    Article  CAS  PubMed  Google Scholar 

  44. Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR. Am J Neuroradiol. 2001;22(5):905–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wintermark M, Reichhart M, Cuisenaire O, Maeder P, Thiran J-P, Schnyder P, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke. 2002;33(8):2025–31.

    Article  CAS  PubMed  Google Scholar 

  46. Wintermark M, Reichhart M, Thiran J-P, Maeder P, Chalaron M, Schnyder P, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51(4):417–32.

    Article  PubMed  Google Scholar 

  47. Parsons MW, Pepper EM, Chan V, Siddique S, Rajaratnam S, Bateman GA, et al. Perfusion computed tomography: prediction of final infarct extent and stroke outcome. Ann Neurol. 2005;58(5):672–9.

    Article  PubMed  Google Scholar 

  48. Eastwood JD, Lev MH, Azhari T, Lee T-Y, Barboriak DP, Delong DM, et al. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology. 2002;222(1):227–36.

    Article  PubMed  Google Scholar 

  49. Smith WS, Roberts HC, Chuang NA, Ong KC, Lee TJ, Johnston SC, et al. Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. AJNR. Am J Neuroradiol. 2003;24(4):688–90.

    PubMed  PubMed Central  Google Scholar 

  50. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR. Am J Neuroradiol. 2003;24(3):419–26.

    PubMed  PubMed Central  Google Scholar 

  51. Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ, et al. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion–derived blood flow and blood volume measurements. Stroke. 2006;37(7).

    Article  CAS  PubMed  Google Scholar 

  52. Nabavi DG, Cenic A, Craen RA, Gelb AW, Bennett JD, Kozak R, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology. 1999;213(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  53. Saini M, Butcher K. Advanced imaging in acute stroke management-part I: computed tomographic. Neurol India. 2009;57(5):541–9.

    Article  PubMed  Google Scholar 

  54. Butcher K, Emery D. Acute stroke imaging. Part II: the ischemic penumbra. The Canadian journal of neurological sciences. J Can Sci Neurol. 2010;37(1):17–27.

    Article  CAS  Google Scholar 

  55. van der Hoeven EJRJ, Dankbaar JW, Algra A, Vos JA, Niesten JM, van Seeters T, et al. Additional diagnostic value of computed tomography perfusion for detection of acute ischemic stroke in the posterior circulation. Stroke. 2015;46(4):1113–5.

    Article  PubMed  Google Scholar 

  56. Das T, Settecase F, Boulos M, Huynh T, d’Esterre CD, Symons SP, et al. Multimodal CT provides improved performance for lacunar infarct detection. Am J Neuroradiol. 2015;36(6):1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Campbell BCV, Weir L, Desmond PM, Tu HTH, Hand PJ, Yan B, et al. CT perfusion improves diagnostic accuracy and confidence in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2013;84(6):613–8.

    Article  PubMed  Google Scholar 

  58. Rudilosso S, Urra X, San Román L, Laredo C, López-Rueda A, Amaro S, et al. Perfusion deficits and mismatch in patients with acute lacunar infarcts studied with whole-brain CT perfusion. AJNR. Am J Neuroradiol. 2015;36(8):1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Butcher K, Parsons M, Allport L, Lee SB, Barber PA, Tress B, et al. Rapid assessment of perfusion-diffusion mismatch. Stroke. 2008;39(1):75–81.

    Article  PubMed  Google Scholar 

  60. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366(12).

    Article  CAS  Google Scholar 

  61. Kate M, Wannamaker R, Kamble H, Riaz P, Gioia LC, Buck B, et al. Penumbral imaging-based thrombolysis with Tenecteplase is feasible up to 24 hours after symptom onset. J Stroke. 2018;20(1):122–30.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Butcher K, Parsons M, Baird T, Barber A, Donnan G, Desmond P, et al. Perfusion thresholds in acute stroke thrombolysis. Stroke. 2003;34(9):2159–64.

    Article  CAS  PubMed  Google Scholar 

  63. Ma H, Parsons MW, Christensen S, Campbell BCV, Churilov L, Connelly A, et al. A multicentre, randomized, double-blinded, placebo-controlled phase III study to investigate extending the time for thrombolysis in emergency neurological deficits (EXTEND). Int J Stroke. 2012;7(1):74–80.

    Article  PubMed  Google Scholar 

  64. Lansberg MG, Lee J, Christensen S, Straka M, De Silva DA, Mlynash M, et al. RAPID automated patient selection for reperfusion therapy. Stroke. 2011;42(6):1608–14.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bivard A, Levi C, Lin L, Cheng X, Aviv R, Spratt NJ, et al. Validating a predictive model of acute advanced imaging biomarkers in ischemic stroke. Stroke. 2017;48(3):645–50.

    Article  PubMed  Google Scholar 

  66. • Wannamaker R, Guinand T, Menon BK, Demchuk A, Goyal M, Frei D, et al. Computed tomographic perfusion predicts poor outcomes in a randomized trial of endovascular therapy. Stroke. 2018;49(6):1426–33 This retrospective analysis of patients who were evaluated with multimodal CT, including CTP, in the ESCAPE trial, indicated that patients with non-penumbral patterns had worse outcomes, irrespective of treatment.

    Article  PubMed  Google Scholar 

  67. Austein F, Riedel C, Kerby T, Meyne J, Binder A, Lindner T, et al. Comparison of perfusion CT software to predict the final infarct volume after thrombectomy. Stroke. 2016;47(9):2311–7.

    Article  PubMed  Google Scholar 

  68. Yu Y, Han Q, Ding X, Chen Q, Ye K, Zhang S, et al. Defining core and penumbra in ischemic stroke: a voxel- and volume-based analysis of whole brain CT perfusion. Sci Rep. 2016;6:20932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, De Camargo ÉC, et al. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy. Am J Neuroradiol. 2010;31(5):817–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–110.

    Article  PubMed  Google Scholar 

  71. Davis SM, Donnan GA, Butcher KS, Parsons M. Selection of thrombolytic therapy beyond 3 h using magnetic resonance imaging. Curr Opin Neurol. 2005;18(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  72. Group TNI of ND and S rt-PSS. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–8.

    Article  Google Scholar 

  73. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. JAMA. 1995;274(13):1017.

    Article  CAS  PubMed  Google Scholar 

  74. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998;352(9136):1245–51.

    Article  CAS  PubMed  Google Scholar 

  75. del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M, et al. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT investigators. Prolyse in acute cerebral thromboembolism. Stroke. 1998;29(1):4–11.

    Article  PubMed  Google Scholar 

  76. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke. JAMA. 1999;282(21):2019–26.

    Article  CAS  PubMed  Google Scholar 

  77. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA. 1999;282(21):2003–11.

    Article  CAS  PubMed  Google Scholar 

  78. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, et al. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke. Stroke. 2007;38(10):2633–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with Alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

    Article  CAS  PubMed  Google Scholar 

  80. IST−3 collaborative group TI-3 collaborative, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet. 2012;379(9834):2352–63.

    Article  CAS  Google Scholar 

  81. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368(10):893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, et al. Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. Lancet Neurol. 2015;14(4):368–76.

    Article  CAS  PubMed  Google Scholar 

  83. Berkhemer OA, Fransen PSS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of Intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  84. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.

    Article  CAS  PubMed  Google Scholar 

  85. Campbell BCV, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11).

  86. Saver JL, Goyal M, Bonafe A, Diener H-C, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.

    Article  CAS  PubMed  Google Scholar 

  87. Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016;15(11):1138–47.

    Article  CAS  PubMed  Google Scholar 

  88. Mocco J, Zaidat OO, von Kummer R, Yoo AJ, Gupta R, Lopes D, et al. Aspiration thrombectomy after intravenous Alteplase versus intravenous Alteplase alone. Stroke. 2016;47(9):2331–8.

    Article  CAS  PubMed  Google Scholar 

  89. Muir KW, Ford GA, Messow C-M, Ford I, Murray A, Clifton A, et al. Endovascular therapy for acute ischaemic stroke: the pragmatic Ischaemic stroke thrombectomy evaluation (PISTE) randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2017;88(1):38–44.

    Article  PubMed  Google Scholar 

  90. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017;16(10):781–8.

    Article  CAS  PubMed  Google Scholar 

  91. Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, et al. Tenecteplase versus Alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;378(17):1573–82.

    Article  CAS  PubMed  Google Scholar 

  92. •• Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18 The DEFUSE 3 trial demonstrated that multimodal CT, including objective CTP assessment, can be used to select patients who benefit from EVT in the 'late window' (>6 hours and up to 16 hours after onset). These results, along with those of reference 72 led to guideline and practice change.

    Article  PubMed  PubMed Central  Google Scholar 

  93. •• Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. New England Journal of Medicine. 2018;378(1):11–21 The DAWN trial demonstrated that multimodal CT, including objective CTP assessment, can be used to select patients who benefit from EVT in the 'late window' (>6 hours and up to 24 hours after onset). These results, along with those of reference 77 led to guideline and practice change.

    Article  Google Scholar 

  94. •• Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803 The EXTEND trial demonstrated that multimodal CT, including objective CTP assessment, can be used to select patients who benefit from intravenous thrombolysis with alteplase up to 9 hours after onset.

    Article  PubMed  Google Scholar 

  95. Campbell BCV, Majoie CBLM, Albers GW, Menon BK, Yassi N, Sharma G, et al. Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. The Lancet Neurology. 2019;18(1):46–55.

    Article  PubMed  Google Scholar 

  96. Ringleb P, Bendszus M, Bluhmki E, Donnan G, Eschenfelder C, Fatar M, et al. Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection. Int J Stroke. 2019. https://doi.org/10.1177/1747493019840938. Accessed 7 July 2019.

    Article  PubMed  Google Scholar 

  97. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.

    Article  PubMed  Google Scholar 

  98. •• Campbell BCV, Ma H, Ringleb PA, Parsons MW, Churilov L, Bendszus M, et al. Extending thrombolysis to 4·5–9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet. 2019; This meta-analysis of the EXTEND, ECASS 4-EXTEND, and EPITHET trials confirmed that multimodal penumbral assessment can be used to select patients who benefit from intravenous thrombolysis with alteplase up to 9 hours after onset.

  99. Smith C, Al-Nuaimi Y, Wainwright J, Sherrington C, Singh A, Kallingal J, et al. The influence of bolus to infusion delays on plasma tissue plasminogen activator levels. Int J Stroke. 2014;9(7):939–42.

    Article  PubMed  Google Scholar 

  100. Hill MD, Goyal M, Demchuk AM, Fisher M. Ischemic stroke tissue-window in the new era of endovascular treatment. Stroke. 2015;46(8):2332–4.

    Article  PubMed  Google Scholar 

  101. Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European stroke organisation (ESO)—European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical Thrombectomy in acute Ischaemic StrokeEndorsed by stroke Alliance for Europe (SAFE). Eur Stroke J. 2019;4(1):6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Clinical Guidelines for Stroke Management. Stroke Foundation of Australia Stroke. 2017. https://informme.org.au/en/Guidelines/Clinical-Guidelines-for-Stroke-Management-2017. Accessed 16 July 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Butcher.

Ethics declarations

Conflict of Interest

Dr. Wannamaker reports a grant from the Quality Improvement & Clinical Research Alberta Stroke Program, during the conduct of the study. Dr. Buck declares no potential conflicts of interest. Dr. Butcher has served as an advisory board consultant and received speaker’s fees and investigator-initiated grant support from Boehringer-Ingelheim, Bayer, BMS-Pfizer and Servier.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wannamaker, R., Buck, B. & Butcher, K. Multimodal CT in Acute Stroke. Curr Neurol Neurosci Rep 19, 63 (2019). https://doi.org/10.1007/s11910-019-0978-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0978-z

Keywords

Navigation