Skip to main content
Log in

Molecular Genetics of Neuronal Migration Disorders

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Woods CG: Human microcephaly. Curr Opin Neurobiol 2004;14: 112–7.

    Article  PubMed  CAS  Google Scholar 

  2. Dobyns WB, Stratton RF, Greenberg F: Syndromes with lissencephaly. I: Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly. Am J Med Genet 1984;18: 509–26.

    Article  PubMed  CAS  Google Scholar 

  3. Kara S, Jissendi-Tchofo P, Barkovich AJ: Developmental differences of the major forebrain commissures in lissencephalies. AJNR Am J Neuroradiol 2010 Oct;31(9):1602–7.

    Article  PubMed  CAS  Google Scholar 

  4. Clement E, Mercuri E, Godfrey C, et al.: Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008;64: 573–82.

    Article  PubMed  CAS  Google Scholar 

  5. Caviness VS, Jr.: Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 1982;256: 293–302.

    PubMed  Google Scholar 

  6. Gilmore EC, Ohshima T, Goffinet AM, et al.: Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 1998;18: 6370–7.

    PubMed  CAS  Google Scholar 

  7. Niethammer M, Smith DS, Ayala R, et al.: NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000;28: 697–711.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka T, Serneo FF, Tseng HC, et al.: Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 2004;41: 215–27.

    Article  PubMed  CAS  Google Scholar 

  9. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004;7: 136–44.

    Article  PubMed  CAS  Google Scholar 

  10. Deuel TA, Liu JS, Corbo JC, et al.: Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 2006;49: 41–53.

    Article  PubMed  CAS  Google Scholar 

  11. • Jaglin XH, Poirier K, Saillour Y, et al.: Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 2009, Jun;41(6):746–52. This article discusses a tubulin mutation that causes polymicrogyria.

    Article  PubMed  CAS  Google Scholar 

  12. •• Keays DA, Tian G, Poirier K, et al.: Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007;128: 45–57. This is the first description of a tubulin mutation as a causative gene for lissencephaly.

    Article  PubMed  CAS  Google Scholar 

  13. Tint I, Jean D, Baas PW, Black MM: Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 2009;29: 10995–1010.

    Article  PubMed  CAS  Google Scholar 

  14. Moores CA, Perderiset M, Kappeler C, et al.: Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 2006;25: 4448–57.

    Article  PubMed  CAS  Google Scholar 

  15. Moores CA, Perderiset M, Francis F, et al.: Mechanism of microtubule stabilization by doublecortin. Mol Cell 2004;14: 833–9.

    Article  PubMed  CAS  Google Scholar 

  16. • Ikegami K, Heier RL, Taruishi M, et al.: Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 2007;104: 3213–8. This study describes the effect of post-translational modifications on transport functions.

    Article  PubMed  CAS  Google Scholar 

  17. • Konishi Y, Setou M: Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 2009;12: 559–67. This study describes the effect of post-translational modifications on transport functions.

    Article  PubMed  CAS  Google Scholar 

  18. Nakata T, Hirokawa N: Neuronal polarity and the kinesin superfamily proteins. Sci STKE 2007;2007: pe6

    Article  PubMed  Google Scholar 

  19. • McKenney RJ, Vershinin M, Kunwar A, et al.: LIS1 and NudE induce a persistent dynein force-producing state. Cell. 2010 Apr 16; 141(2): 304–14. This study describes the molecular role of LIS1, the first causative gene identified for lissencephaly.

    Article  PubMed  CAS  Google Scholar 

  20. Reiner O, Carrozzo R, Shen Y, et al.: Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993;364: 717–21.

    Article  PubMed  CAS  Google Scholar 

  21. Lo Nigro C, Chong CS, Smith AC, et al.: Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 1997;6: 157–64.

    Article  PubMed  CAS  Google Scholar 

  22. Chong SS, Pack SD, Roschke AV, et al.: A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 1997;6: 147–55.

    Article  PubMed  CAS  Google Scholar 

  23. Saillour Y, Carion N, Quelin C, et al.: LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch Neurol 2009;66: 1007–15.

    Article  PubMed  Google Scholar 

  24. Pilz DT, Matsumoto N, Minnerath S, et al.: LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 1998;7: 2029–37.

    Article  PubMed  CAS  Google Scholar 

  25. Gleeson JG, Allen KM, Fox JW, et al.: Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998;92: 63–72.

    Article  PubMed  CAS  Google Scholar 

  26. des Portes V, Pinard JM, Billuart P, et al.: A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 1998;92: 51–61.

    Article  PubMed  Google Scholar 

  27. Gleeson JG, Minnerath SR, Fox JW, et al.: Characterization of mutations in the gene doublecortin in patients with double cortex syndrome. Ann Neurol 1999;45: 146–53.

    Article  PubMed  CAS  Google Scholar 

  28. Guerrini R, Moro F, Andermann E, et al.: Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol 2003;54: 30–7.

    Article  PubMed  Google Scholar 

  29. • Bahi-Buisson N, Poirier K, Boddaert N,et al.: Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 2008;45: 647–53. This study expands the phenotype of the new tubulin isoform mutations causing lissencephaly.

    Article  PubMed  CAS  Google Scholar 

  30. • Abdollahi MR, Morrison E, Sirey T, et al.: Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 2009;85: 737–44. Mutations in another tubulin isoform cause a cortical malformation.

    Article  PubMed  CAS  Google Scholar 

  31. • Tischfield MA, Baris HN, Wu C, et al.: Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 2010, 140: 74–87. Another mutation in tubulin causes a neurologic disorder.

    Article  PubMed  CAS  Google Scholar 

  32. •• Poirier K, Saillour Y, Bahi-Buisson N, et al.: Mutations in the neuronal {beta}-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 2010, 19: 4462–73. The tubulin isoform that causes congenital fibrosis of the extraocular muscles also is a causative gene for lissencephaly.

    Article  PubMed  CAS  Google Scholar 

  33. Tischfield MA, Engle EC: Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis. Biosci Rep 2010, 30: 319–30.

    Article  PubMed  CAS  Google Scholar 

  34. Hong SE, Shugart YY, Huang DT, et al.: Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000;26: 93–6.

    Article  PubMed  CAS  Google Scholar 

  35. •• Ozcelik T, Akarsu N, Uz E, et al.: Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans. Proc Natl Acad Sci U S A 2008;105: 4232–6. This is the first report of human mutations in the VLDLR receptor causing lissencephaly and a very strong cerebellar phenotype.

    Article  PubMed  CAS  Google Scholar 

  36. Boycott KM, Bonnemann C, Herz J, et al.: Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium syndrome). J Child Neurol 2009;24: 1310–5.

    Article  PubMed  Google Scholar 

  37. Kitamura K, Yanazawa M, Sugiyama N, et al.: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002;32: 359–69.

    Article  PubMed  CAS  Google Scholar 

  38. Shoubridge C, Fullston T, Gecz J: ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 2010, 31: 889–900.

    Article  PubMed  CAS  Google Scholar 

  39. Kato M, Das S, Petras K, et al.: Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004;23: 147–59.

    Article  PubMed  CAS  Google Scholar 

  40. Kato M, Saitoh S, Kamei A, et al.: A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 2007;81: 361–6.

    Article  PubMed  CAS  Google Scholar 

  41. Guerrini R, Moro F, Kato M, et al.: Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 2007;69: 427–33.

    Article  PubMed  CAS  Google Scholar 

  42. •• Marsh E, Fulp C, Gomez E, et al.: Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 2009;132: 1563–76. The animal model of ARX mutations shows defects in interneuron migration.

    Article  PubMed  Google Scholar 

  43. Collombat P, Mansouri A, Hecksher-Sorensen J, et al.: Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003;17: 2591–603.

    Article  PubMed  CAS  Google Scholar 

  44. Sheen VL, Dixon PH, Fox JW, et al.: Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 2001;10: 1775–83.

    Article  PubMed  CAS  Google Scholar 

  45. Sheen VL, Jansen A, Chen MH, et al.: Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 2005;64: 254–62.

    PubMed  CAS  Google Scholar 

  46. Parrini E, Ramazzotti A, Dobyns WB, et al.: Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 2006;129: 1892–906.

    Article  PubMed  CAS  Google Scholar 

  47. Guerrini R, Mei D, Sisodiya S, et al.: Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 2004;63: 51–6.

    PubMed  CAS  Google Scholar 

  48. Sheen VL, Ganesh VS, Topcu M, et al.: Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 2004;36: 69–76.

    Article  PubMed  CAS  Google Scholar 

  49. de Wit MC, de Coo IF, Halley DJ, et al.: Movement disorder and neuronal migration disorder due to ARFGEF2 mutation. Neurogenetics 2009;10: 333–6.

    Article  PubMed  Google Scholar 

  50. Guerrini R, Filippi T: Neuronal migration disorders, genetics, and epileptogenesis. J Child Neurol 2005, 20:287–299.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy S. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.S. Molecular Genetics of Neuronal Migration Disorders. Curr Neurol Neurosci Rep 11, 171–178 (2011). https://doi.org/10.1007/s11910-010-0176-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-010-0176-5

Keywords

Navigation