Skip to main content
Log in

Chlorthalidone: Mechanisms of Action and Effect on Cardiovascular Events

  • Hypertension Management and Antihypertensive Drugs (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

How chlorthalidone (CTDN) reduces risk for cardiovascular events (CVEs) can be considered in light of its ability to lower blood pressure (BP) and its non-BP related, pleiotropic effects. The mechanism by which CTDN lowers BP is unclear but may include alterations in whole body regulation and vasodilatory actions on vasculature, possibly mediated via its inhibitory effects on carbonic anhydrase. Additionally, CTDN has potentially beneficial, non-BP related, pleiotropic effects that include improvements in endothelial function, anti-platelet activity, and oxidative status. CTDN reduces pulse wave velocity, predictor of CVEs and a measure of central aortic stiffness associated with endothelial dysfunction. On the other hand, CTDN fosters hypokalemia, hyperglycemia, sympathetic discharge, and the renin–angiotensin–aldosterone system, but these potentially harmful effects do not appear to materially reduce CTDN’s ability to prevent CVEs. Further, CTDN reduces and regresses left ventricular hypertrophy (LVH), an important BP-dependent predictor of CVEs. Consistent with this finding, CTDN was more effective than amlodipine in reducing congestive heart failure (CHF) in the Anti-hypertensive and Lipid-lowering Treatment to Prevent Heart Attach Trial (ALLHAT). In reducing CVEs, CTDN was superior to lisinopril in ALLHAT and superior to hydrochlorthiazide in observational cohort analyses and in network analyses of randomized trials. A statistical synthesis of randomized trials suggests that the reduction in cardiovascular risk from CTDN can be explained primarily on the basis of its ability to lower blood pressure rather than its influence upon non-BP related, pleiotropic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Riess W, Dubach UC, Burckhardt D, Theobald W, Vuillard P, Zmmerli M. Pharmacokinetic studies with chlorthalidone (Hygroton) in man. Eur J Clin Pharmacol. 1977;12:375–82.

    Article  PubMed  CAS  Google Scholar 

  2. Collste P, Garle M, Rawlins MD, Sjogvist F. Interindividual differences in chlorthalidone concentration in plasma and red cells of man after single and multiple doses. Eur J Clin Pharmacol. 1976;9:319–25.

    Article  PubMed  CAS  Google Scholar 

  3. Ernst ME, Moser M. Use of diuretics in patients with hypertension. N Engl J Med. 2009;361:2153–64.

    Article  PubMed  CAS  Google Scholar 

  4. Bengtsson C, Johnsson G, Sannerstedt R, Werkö L. Effect of different doses of chlorthalidone on blood pressure, serum potassium, and serum urate. BMJ. 1975;1:197–9.

    Article  PubMed  CAS  Google Scholar 

  5. Neuvonen PJ, Pentikäinen PJ, Jounela AJ. Effect of diuretic, β-adrenoceptor blocking agent and their combination on elevated blood pressure and serum potassium: a cross-over study. Br J Clin Pharmacol. 1978;6:363–7.

    Article  PubMed  CAS  Google Scholar 

  6. Materson BJ, Oster JR, Michael UF, Bolton SM, Burton ZC, Stambaugh JE, et al. Dose response to chlorthalidone in patients with mild hypertension. Efficacy of a lower dose. Clin Pharmacol Ther. 1978;24(2):192–8.

    PubMed  CAS  Google Scholar 

  7. Tweeddale MG, Ogilvie RI, Ruedy J. Antihypertensive and biochemical effects of chlorthalidone. Clin Pharmacol Ther. 1977;22(5 Pt 1):519–27.

    PubMed  CAS  Google Scholar 

  8. Russell JG, Mayhew SR, Humphries IS. Chlorthalidone in mild hypertension—dose response relationship. Eur J Clin Pharmacol. 1981;20:407–11.

    Article  PubMed  CAS  Google Scholar 

  9. Morledge JH, Ettinger B, Aranda J, McBarron F, Barra P, Gorwit J, et al. Isolated systolic hypertension in the elderly. A placebo-controlled, dose–response evaluation of chlorthalidone. J Am Geriatr Soc. 1986;34:199–206.

    PubMed  CAS  Google Scholar 

  10. •• Ernst ME, Goerdt CJ, Carter BL, Steffensmeier JJ, Phillips BB, Zimmerman MB, et al. Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure. Hypertension. 2006;47:352–8. This trial shows that CTDN is superior to HCTZ in lowering nighttime BP, −13.5 versus −6.4, respectively.

    Article  PubMed  CAS  Google Scholar 

  11. Ernst ME, Carter BL, Zheng S, Grimm Jr RH. Meta-analysis of dose–response characteristics of hydrochlorothiazide and chlorthalidone: effects on systolic blood pressure and potassium. Am J Hypertens. 2010;23:440–6.

    Article  PubMed  CAS  Google Scholar 

  12. Peterzan MA, Hardy R, Chaturvedi N, Hughes AD. Meta-analysis of dose–response relationships for hydrochlorothiazide, chlorthalidone, and bendroflumethiazide on blood pressure, serum potassium, and urate. Hypertension. 2012;59:1104–9.

    Article  PubMed  CAS  Google Scholar 

  13. • Bakris GL, Sica D, White WB, Cushman WC, Weber MA, Handley A, et al. Antihypertensive efficacy of hydrochlorothiazide versus chlorthalidone combined with azilsartan medoxomil. Am J Med 2012;125:1229.e1–1229.e10. This trial shows that CTDN lowers office and 24 h BP more than HCTZ with differences of −5.6 and −5.8, respectively.

    Google Scholar 

  14. Tarzi RC, Dustan HP, Frohlich ED. Long-term thiazide therapy in essential hypertension. Evidence for persistent alterations in plasma volume and renin activity. Circulation. 1970;41:709–17.

    Article  Google Scholar 

  15. Wilson IM, Freis ED. Relationship between plasma and extracellular fluid volume depletion and the antihypertensive effect of chlorothiazide. Circulation. 1959;20:1028–36.

    Article  PubMed  CAS  Google Scholar 

  16. Gifford Jr RW, Mattox VR, Orvis AL, Somes DA, Rosevear JW. Effect of thiazide diuretics on plasma volume, body electrolytes, and excretion of aldosterone in hypertension. Circulation. 1961;24:1197–205.

    Article  PubMed  Google Scholar 

  17. Roos JC, Boer P, Koomans HA, Sones DA, Rosevear JW. Haemodynamic and hormonal changes during acute and chronic diuretic treatment in essential hypertension. Eur J Clin Pharmacol. 1981;19:107–12.

    Article  PubMed  CAS  Google Scholar 

  18. Tobian L. Why do thiazide diuretics lower blood pressure in essential hypertension? Annu Rev Pharmacol. 1967;7:399–408.

    Article  PubMed  CAS  Google Scholar 

  19. Winer BM. The antihypertensive actions of benzothiadiazines. Circulation. 1961;23:211–8.

    Article  PubMed  CAS  Google Scholar 

  20. Hughes AD. How do thiazide and thiazide-like diuretics lower blood pressure? J Renin-Angiotensin-Aldosterone Syst. 2004;5:155–60.

    Article  PubMed  CAS  Google Scholar 

  21. Bagatin J, Pavlicevic I, Sardelic S, Pivac N, Rumboldt Z. Vascular effects of chlorthalidone in mild hypertensives. Int J Clin Pharmacol Res. 1995;15:201–8.

    PubMed  CAS  Google Scholar 

  22. Puscas I, Coltau M, Baican M, Domuta G, Hecht A. Vasodilatory effect of diuretics is dependent on inhibition of vascular smooth muscle carbonic anhydrase by a direct mechanism of action. Drugs Exp Clin Res. 1999;25:271–9.

    PubMed  CAS  Google Scholar 

  23. +Temperini C, Cecchi A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: sulfonamide diuretics revisited—old leads for new applications? Org Biomol Chem. 2008;6:2499–506.

    Article  PubMed  CAS  Google Scholar 

  24. Kurtz TW. Chlorthalidone: don’t call it “thiazide-like” anymore. Hypertension. 2010;56:335–7.

    Article  PubMed  CAS  Google Scholar 

  25. Calder JA, Schachter M, Sever PS. Potassium channel opening properties of thiazide diuretics in isolated guinea pig resistance arteries. J Cardiovasc Pharmacol. 1994;24:158–64.

    Article  PubMed  CAS  Google Scholar 

  26. Pickkers P, Garcha RS, Schachter M, Smits P, Hughes AD. Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide. Hypertension. 1999;33:1043–8.

    Article  PubMed  CAS  Google Scholar 

  27. Aamand R, Dalsgaard T, Jensen FB, Simosen U, Roepstorff A, Fago A. Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol. 2009;297:H2068–74.

    Article  PubMed  CAS  Google Scholar 

  28. Yamanari H, Nakamura K, Miura D, Yamanari S, Ohe T. Spironolactone and chlorthalidone in uncontrolled elderly hypertensive patients treated with calcium antagonists and angiotensin II receptor-blocker: effects on endothelial function, inflammation, and oxidative stress. Clin Exp Hypertens. 2009;31(7):585–94.

    Article  PubMed  CAS  Google Scholar 

  29. Dell’Omo G, Penno G, Del Prato S, Pedrinelli R. Chlorthalidone improves endothelial-mediated vascular responses in hypertension complicated by nondiabetic metabolic syndrome. J Cardiovasc Pharmacol Ther. 2005;10(4):265–72.

    Article  PubMed  Google Scholar 

  30. Woodman R, Brown C, Lockette W. Chlorthalidone decreases platelet aggregation and vascular permeability and promotes angiogenesis. Hypertension. 2010;56(3):463–70.

    Article  PubMed  CAS  Google Scholar 

  31. Vaitkevicius H, Turner I, Spalding A, Lockette W. Chloride increases adrenergic receptor-mediated platelet and vascular responses. Am J Hypertens. 2002;15(6):492–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sato K, Dohi Y, Kojima M Takase H, Suzuki S, Ito S. Antioxidative effects of thiazide diuretics in refractory hypertensive patients. 2010;60(10):612–6.

  33. McEniery CM, Wallace S, Mackenzie IS, McDonnell B, Yasmin, Newby DE. Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans. Hypertension. 2006;48(4):602–8. Epub 2006 Aug 28.

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11.

    Article  PubMed  Google Scholar 

  35. Kwon BJ, Jang SW, Choi KY, Kim DB, Cho EJ, Ihm SH, et al. Comparison of the efficacy between hydrochlorothiazide and chlorthalidone on central aortic pressure when added on to candesartan in treatment-naïve patients of hypertension. Hypertens Res. 2013;36(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  36. Savage PJ, Pressel SL, Curb JD, Schron EB, Applegate WB, Black HR, et al. Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: the Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med. 1998;158(7):741–51.

    Article  PubMed  CAS  Google Scholar 

  37. •• Dorsch MP, Gillespie BW, Erickson SR, et al. Chlorthalidone reduces cardiovascular events compared with hydrochlorothiazide: a retrospective cohort analysis. Hypertension. 2011;57:689–94. This head-to-head comparison of the 2 drugs in an observational cohort study shows a 21 % reduction in CVEs from CTDN versus HCTZ.

    Article  PubMed  CAS  Google Scholar 

  38. Franse LV, Pahor M, Di Bari M, Somes GW, Cushman WC, Applegate WB. Hypokalemia associated with diuretic use and cardiovascular events in the Systolic Hypertension in the Elderly Program. Hypertension. 2000;35(5):1025–30.

    Article  PubMed  CAS  Google Scholar 

  39. Kostis JB, Lacy CR, Hall WD, Wilson AC, Borhani NO, Krieger SD, et al. The effect of chlorthalidone on ventricular ectopic activity in patients with isolated systolic hypertension. The SHEP Study Group. Am J Cardiol. 1994;74(5):464–7.

    Article  PubMed  CAS  Google Scholar 

  40. • Alderman MH, Piller LB, Ford CE, Probstfield JL, Oparil S, et al. Clinical significance of incident hypokalemia and hyperkalemia in treated hypertensive patients in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Hypertension. 2012;59(5):926–33. This observational study concludes: “Thus, for most patients, concerns about potassium levels should not influence the clinician’s decision about initiating hypertension treatment with low-moderate doses of thiazide diuretics (12.5–25.0 mg of C [chlorthalidone])”.

    Article  PubMed  CAS  Google Scholar 

  41. Shafi T, Appel LJ, Miller ER, Klag MJ, Parekh RS. Changes in serum potassium mediate thiazide-induced diabetes. Hypertension. 2008;52:1022–9.

    Article  PubMed  CAS  Google Scholar 

  42. Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, et al. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(20):2191–201.

    Article  PubMed  CAS  Google Scholar 

  43. Barzilay JI, Davis BR, Pressel SL, Cutler JA, Einhorn PT, Black HR, et al. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: the ALLHAT Diabetes Extension Study. Circ Cardiovasc Qual Outcome. 2012;5(2):153–62.

    Article  Google Scholar 

  44. Kostis JB, Wilson AC, Freudenberger RS, Cosgrove NM, Pressel SL, Davis BR, et al. Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005;95(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  45. Wright Jr JT, Probstfield JL, Cushman WC, Pressel SL, Cutler JA, Davis BR, et al. ALLHAT findings revisited in the context of subsequent analyses, other trials, and meta-analyses. Arch Intern Med. 2009;169(9):832–42.

    Article  PubMed  CAS  Google Scholar 

  46. Menon DV, Arbique D, Wang Z, Adams-Huet B, Auchus RJ, Vongpatanasin W. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. J Clin Endocrinol Metab. 2009;94(4):1361.

    Article  PubMed  CAS  Google Scholar 

  47. Raheja P, Price A, Wang Z, Arbique D, Adams-Huet B, Auchus RJ, et al. Spironolactone prevents chlorthalidone-induced sympathetic activation and insulin resistance in hypertensive patients. Hypertension. 2012;60(2):319–25.

    Article  PubMed  CAS  Google Scholar 

  48. Hypertension Detection and Follow-up Program Cooperative Group. Five-year findings of the Hypertension Detection and Follow-up Program. Prevention and reversal of left ventricular hypertrophy with antihypertensive drug therapy. Hypertension. 1985;7:105–12.

    Article  Google Scholar 

  49. Ofili EO, Cohen JD, St Vrain JA, Pearson A, Martin TJ, Uy ND, et al. Effect of treatment of isolated systolic hypertension on left ventricular mass. JAMA. 1998;279:778–80.

    Article  PubMed  CAS  Google Scholar 

  50. • Ernst ME, Neaton JD, Grimm Jr RH, Collins G, Thomas W, Soliman EZ, et al. Long-term effects of chlorthalidone versus hydrochlorothiazide on electrocardiographic left ventricular hypertrophy in the Multiple Risk Factor Intervention Trial. Hypertension. 2011;58:1001–7. CTDN reduces LVH in this observational study of the MRFIT trial.

    Article  PubMed  CAS  Google Scholar 

  51. Bacharova L, Estes H, Bang L, Rowlandson I, Schillaci G, Verdecchia P, et al. The first statement of the Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy. J Electrocardiol. 2010;43:197–9.

    Article  PubMed  Google Scholar 

  52. Hsieh BP, Pham MX, Froelicher VF. Prognostic value of electrocardiographic criteria for left ventricular hypertrophy. Am Heart J. 2005;150:161–7.

    Article  PubMed  Google Scholar 

  53. Jain A, Tandri H, Dalal D, Chahal H, Soliman EZ, Prineas RJ, et al. Diagnostic and prognostic utility of electrocardiography for left ventricular hypertrophy defined by magnetic resonance imaging in relationship to ethnicity: the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2010;159:652–8.

    Article  PubMed  Google Scholar 

  54. • Roush GC, Holford TR, Guddati AK. Chlorthalidone compared with hydrochlorothiazide in reducing cardiovascular events: systematic review and network meta-analyses. Hypertension. 2012;59(6):1110–7. This network meta-analysis finds that CTDN reduces CVEs by 21 % more than HCTZ.

    Article  PubMed  CAS  Google Scholar 

  55. Dhalla IA, Gomes T, Yao Z, Nagge J, Persaud N, et al. Chlorthalidone versus hydrochlorothiazide for the treatment of hypertension in older adults: a population-based cohort study. Ann Intern Med. 2013;158(6):447–55.

    Article  PubMed  Google Scholar 

  56. Roush GC, Holford TR, Guddati AK. Comment. Chlorthalidone versus hydrochlorothiazide. Ann Intern Med. 2013;158:920.

  57. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

George C. Roush has received compensation and reimbursement for travel expenses from Farme for lecturing on chlorthalidone and hydrochlorothiazide.

Venkata Buddharaju, Michael E. Ernst, and Theodore R. Holford declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Roush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roush, G.C., Buddharaju, V., Ernst, M.E. et al. Chlorthalidone: Mechanisms of Action and Effect on Cardiovascular Events. Curr Hypertens Rep 15, 514–521 (2013). https://doi.org/10.1007/s11906-013-0372-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0372-1

Keywords

Navigation