Skip to main content

Advertisement

Log in

Recent insights into cardiac hypertrophy and left ventricular remodeling

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy is a compensatory mechanism of the heart to maintain cardiac output under stresses that compromise cardiac function. Mechanical stretch and neurohumoral factors induce changes in intracellular signaling pathways resulting in increased protein synthesis and activation of specific genes promoting cardiac growth, eventually leading to left ventricular remodeling and cardiac dysfunction. The remodeling process results from alterations in cardiac myocytes as well as the extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. World Health Organization: World health report 2002 Reducing risks, promoting healthy life. Geneva: World Health Organization; 2002.

    Google Scholar 

  2. Hill JA, Karimi M, Kutschke W, et al.: Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 2000, 101:2863–2869.

    PubMed  CAS  Google Scholar 

  3. Grossman W, Jones D, McLaurin LP: Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975, 56:56–64.

    PubMed  CAS  Google Scholar 

  4. Levy D, Garrison RJ, Savage DD, et al.: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990, 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  5. Kostin S, Pool L, Elsasser A, et al.: Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003, 92:715–724.

    Article  PubMed  CAS  Google Scholar 

  6. Huss JM, Kelly DP: Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 2005, 115:547–555.

    Article  PubMed  CAS  Google Scholar 

  7. Mehra MR, Uber PA, Francis GS: Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol 2003, 41:1606–1610.

    Article  PubMed  Google Scholar 

  8. Colao A, Di SC, Vitale G, et al.: Influence of growth hormone on cardiovascular health and disease. Treat Endocrinol 2003, 2:347–356.

    Article  PubMed  CAS  Google Scholar 

  9. Duerr RL, Huang S, Miraliakbar HR, et al.: Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest 1995, 95:619–627.

    PubMed  CAS  Google Scholar 

  10. Dorn II GW, Force T: Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005, 115:527–537. A comprehensive review describing the specific intracellular signaling pathways involved in the regulation of protein synthesis and hypertrophic gene expression during cardiac growth.

    Article  PubMed  CAS  Google Scholar 

  11. Yamazaki T, Komuro I, Yazaki Y: Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol 1995, 27:133–140.

    PubMed  CAS  Google Scholar 

  12. Kilic A, Velic A, De Windt LJ, et al.: Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptorde ficient mice. Circulation 2005, 112:2307–2317.

    Article  PubMed  CAS  Google Scholar 

  13. Hoh JF, McGrath PA, Hale PT: Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 1978, 10:1053–1076.

    Article  PubMed  CAS  Google Scholar 

  14. Whalen RG, Sell SM: Myosin from fetal hearts contains the skeletal muscle embryonic light chain. Nature 1980, 286:731–733.

    Article  PubMed  CAS  Google Scholar 

  15. Schier JJ, Adelstein RS: Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest 1982, 69:816–825.

    PubMed  CAS  Google Scholar 

  16. Mercadier JJ, Bouveret P, Gorza L, et al.: Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res 1983, 53:52–62.

    PubMed  CAS  Google Scholar 

  17. Dorn II GW, Robbins J, Sugden PH: Phenotyping hypertrophy: eschew obfuscation. Circ Res 2003, 92:1171–1175.

    Article  PubMed  CAS  Google Scholar 

  18. Mayer Y, Czosnek H, Zeelon PE, et al.: Expression of the genes coding for the skeletal muscle and cardiac actions in the heart. Nucleic Acids Res 1984, 12:1087–1100.

    Article  PubMed  CAS  Google Scholar 

  19. Carrier L, Boheler KR, Chassagne C, et al.: Expression of the sarcomeric actin isogenes in the rat heart with development and senescence. Circ Res 1992, 70:999–1005.

    PubMed  CAS  Google Scholar 

  20. Jin JP, Huang QQ, Yeh HI, Lin JJ: Complete nucleotide sequence and structural organization of rat cardiac troponin T gene. A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J Mol Biol 1992, 227:1269–1276.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy AM: Contractile protein phenotypic variation during development. Cardiovasc Res 1996, 31 Spec No:E25–E33.

    Google Scholar 

  22. Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiol Rev 1999, 79:215–262.

    PubMed  CAS  Google Scholar 

  23. Hasegawa K, Lee SJ, Jobe SM, et al.: cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 1997, 96:3943–3953.

    PubMed  CAS  Google Scholar 

  24. Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S: Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other’s expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 1998, 273:34904–34910.

    Article  PubMed  CAS  Google Scholar 

  25. Molkentin JD, Dorn II GW: Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001, 63:391–426.

    Article  PubMed  CAS  Google Scholar 

  26. Molkentin JD, Lu JR, Antos CL, et al.: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998, 93:215–228.

    Article  PubMed  CAS  Google Scholar 

  27. Belaguli NS, Sepulveda JL, Nigam V, et al.: Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Mol Cell Biol 2000, 20:7550–7558.

    Article  PubMed  CAS  Google Scholar 

  28. Wang D, Chang PS, Wang Z, et al.: Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001, 105:851–862.

    Article  PubMed  CAS  Google Scholar 

  29. Sadoshima J, Izumo S: The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 1997, 59:551–571.

    Article  PubMed  CAS  Google Scholar 

  30. Akazawa H, Komuro I: Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 2003, 92:1079–1088.

    Article  PubMed  CAS  Google Scholar 

  31. McKinsey TA, Olson EN: Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005, 115:538–546. This summary describes the functions of HDACs and HDAC modulators,which may provide a powerful therapeutic approach for cardiac hypertrophy and LV remodeling.

    Article  PubMed  CAS  Google Scholar 

  32. Vega RB, Harrison BC, Meadows E, et al.: Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004, 24:8374–8385.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang CL, McKinsey TA, Chang S, et al.: Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002, 110:479–488.

    Article  PubMed  CAS  Google Scholar 

  34. Chang S, McKinsey TA, Zhang CL, et al.: Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004, 24:8467–8476.

    Article  PubMed  CAS  Google Scholar 

  35. Antos CL, McKinsey TA, Dreitz M, et al.: Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003, 278:28930–28937.

    Article  PubMed  CAS  Google Scholar 

  36. Kook H, Lepore JJ, Gitler AD, et al.: Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 2003, 112:863–871.

    Article  PubMed  CAS  Google Scholar 

  37. Buitrago M, Lorenz K, Maass AH, et al.: The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med 2005, 11:837–844.

    Article  PubMed  CAS  Google Scholar 

  38. Takimoto E, Champion HC, Li M, et al.: Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005, 11:214–222. This excellent article describes a role for a phosphodiesterase 5A inhibitor sildenafil suppressing pressure overload induced cardiac hypertrophy and remodeling.

    Article  PubMed  CAS  Google Scholar 

  39. Giordano FJ: Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005, 115:500–508.

    Article  PubMed  CAS  Google Scholar 

  40. Takimoto E, Champion HC, Li M, et al.: Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 2005, 115:1221–1231.

    Article  PubMed  CAS  Google Scholar 

  41. Takimoto E, Champion HC, Belardi D, et al.: cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 2005, 96:100–109.

    Article  PubMed  CAS  Google Scholar 

  42. Harada M, Qin Y, Takano H, et al.: G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 2005, 11:305–311.

    Article  PubMed  CAS  Google Scholar 

  43. Deschamps AM, Spinale FG: Disruptions and detours in the myocardial matrix highway and heart failure. Curr Heart Fail Rep 2005, 2:10–17.

    PubMed  CAS  Google Scholar 

  44. Spinale FG: Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 2002, 90:520–530.

    Article  PubMed  CAS  Google Scholar 

  45. Heymans S, Schroen B, Vermeersch P, et al.: Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005, 112:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  46. Kassiri Z, Oudit GY, Sanchez O, et al.: Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res 2005, 97:380–390.

    Article  PubMed  CAS  Google Scholar 

  47. Ducharme A, Frantz S, Aikawa M, et al.: Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000, 106:55–62.

    Article  PubMed  CAS  Google Scholar 

  48. Lindsey ML, Escobar GP, Dobrucki LW, et al.: Matrix Metalloproteinase-9 Gene Deletion Facilitates Angiogenesis Following Myocardial Infarction. Am J Physiol Heart Circ Physiol 2005, In press.

  49. Yarbrough WM, Mukherjee R, Escobar GP, et al.: Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling. Circulation 2003, 108:1753–1759.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson EM, Moainie SL, Baskin JM, et al.: Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 2003, 107:2857–2863.

    Article  PubMed  CAS  Google Scholar 

  51. Brancaccio M, Fratta L, Notte A, et al.: Melusin, a musclespeci fic integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 2003, 9:68–75.

    Article  PubMed  CAS  Google Scholar 

  52. De AM, Notte A, Accornero F, et al.: Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ Res 2005, 96:1087–1094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Force MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerkela, R., Force, T. Recent insights into cardiac hypertrophy and left ventricular remodeling. Curr Heart Fail Rep 3, 14–18 (2006). https://doi.org/10.1007/s11897-006-0026-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-006-0026-6

Keywords

Navigation