Skip to main content

Advertisement

Log in

Molecular etiologies of mody and other early-onset forms of diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Maturity-onset diabetes of the young (MODY) are monogenic forms of type 2 diabetes that are characterized by an early disease onset, autosomal-dominant inheritance, and defects in insulin secretion. Genetic studies have identified mutations in at least eight genes associated with different forms of MODY. The majority of the MODY subtypes are caused by mutations in transcription factors that include hepatocyte nuclear factor (HNF)-4α, HNF-1α., PDX-1, HNF-1β, and NEURO-D1/BETA-2. In addition, genetic defects in the glucokinase gene, the glucose sensor of the pancreatic β cells, and the insulin gene also lead to impaired glucose tolerance. Biochemical and genetic studies have demonstrated that the MODY genes are functionally related and form an integrated transcriptional network that is important for many metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Matschinsky FM: Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 1990, 39:647–652.

    Article  PubMed  CAS  Google Scholar 

  2. Yamagata K, Furuta H, Oda N, et al.: Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996, 384:458–460.

    Article  PubMed  CAS  Google Scholar 

  3. Stoffers DA, Zinkin NT, Stanojevic V, et al.: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997; 15:106–110.

    Article  PubMed  CAS  Google Scholar 

  4. Stoffers DA, Ferrer J, Clarke WL, Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 1997, 17:138–139.

    Article  PubMed  CAS  Google Scholar 

  5. Yamagata K, Oda N, Kaisaki PJ, et al.: Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 1996, 384:455–458.

    Article  PubMed  CAS  Google Scholar 

  6. Horikawa Y, Iwasaki N, Hara M, et al.: Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997, 17:384–385.

    Article  PubMed  CAS  Google Scholar 

  7. Malecki MT, Jhala US, Antonellis A, et al.: Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 1999, 23:323–328.

    Article  PubMed  CAS  Google Scholar 

  8. Waeber G, Delplanque J, Bonny C, et al.: The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat Genet 2000, 24:291–295.

    Article  PubMed  CAS  Google Scholar 

  9. Vinik A, Bell G: Mutant insulin syndromes. Horm Metab Res 1988, 20:1–10. [Published erratum appears in Horm Metab Res 1988, 20:191.]

    Article  PubMed  CAS  Google Scholar 

  10. Chen WS, Manova K, Weinstein DC, et al.: Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 1994, 8:2466–2477.

    Article  PubMed  CAS  Google Scholar 

  11. Stoffel M, Duncan SA: The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci U SA 1997, 94:13209–13214.

    Article  CAS  Google Scholar 

  12. Byrne MM, Sturis J, Fajans SS, et al.: Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 1995, 44:699–704.

    Article  PubMed  CAS  Google Scholar 

  13. Herman WH, Fajans SS, Smith MJ, et al.: Diminished insulin and glucagon secretory responses to arginine in nondiabetic subjects with a mutation in the hepatocyte nuclear factor-4alpha/MODY1 gene. Diabetes 1997, 46:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  14. Shih DQ, Dansky HM, Fleisher M, et al.: Genotype/phenotype relationships in HNF-4alpha/MODY1: haploinsufficiency is associated with reduced apolipoprotein (AII), apolipoprotein (CIII), lipoprotein(a), and triglyceride levels. Diabetes 2000, 49:832–837. This is a genotype/phenotype study in HNF-4a/MODY1 R-W pedigree demonstrating that a heterozygous HNF-4a mutation leads to a hepatocyte secretion defect of liver-specific proteins. This study suggests that HNF-4a-dependent serum protein profiles may serve as molecular markers that can be used to diagnose MODY1 in the future.

    Article  PubMed  CAS  Google Scholar 

  15. Moller AM, Urhammer SA, Dalgaard LT, et al.: Studies of the genetic variability of the coding region of the hepatocyte nuclear factor-4alpha in Caucasians with maturity onset NIDDM. Diabetologia 1997, 40:980–983.

    Article  PubMed  CAS  Google Scholar 

  16. Malecki MT, Yang Y, Antonellis A, et al.: Identification of new mutations in the hepatocyte nuclear factor 4alpha gene among families with early onset type 2 diabetes mellitus. Diabet Med 1999, 16:193–200.

    Article  PubMed  CAS  Google Scholar 

  17. Hani EH, Suaud L, Boutin P, et al.: A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulindependent diabetes mellitus. J Clin Invest 1998, 101:521–526.

    Google Scholar 

  18. Navas MA, Munoz-Elias EJ, Kim J, et al.: Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q). Diabetes 1999, 48:1459–1465.

    Article  PubMed  CAS  Google Scholar 

  19. ByrneMM,Sturis J, Clement K, et al.: Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest 1994, 93:1120–1130.

    PubMed  CAS  Google Scholar 

  20. Njolstad PR, Sovik O, Cuesta-Munoz A, et al.: Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 2001, 344:1588–1592.

    Article  PubMed  CAS  Google Scholar 

  21. Glaser B, Kesavan P, Heyman M, et al.: Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 1998, 338:226–230.

    Article  PubMed  CAS  Google Scholar 

  22. Grupe A, Hultgren B, Ryan A, et al.: Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 1995, 83:69–78.

    Article  PubMed  CAS  Google Scholar 

  23. Velho G, Petersen KF, Perseghin G, et al.: Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J Clin Invest 1996, 98:1755–1761.

    PubMed  CAS  Google Scholar 

  24. Hattersley AT, Beards F, Ballantyne E, et al.: Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 1998, 19:268–270. By studying subjects with the MODY2 mutation, the authors demonstrated that a defect in the sensing of glucose by the pancreas, caused by a heterozygous mutation in the GCK gene, reduces fetal growth and birth weight. The data in this report suggest that the mechanisms that produce low birth weight (reduced insulin secretion) may be the same process that in later life leads to diabetes.

    Article  PubMed  CAS  Google Scholar 

  25. Pearson ER, Velho G, Clark P, et al.: beta-cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1alpha and glucokinase mutations. Diabetes 2001, 50|(suppl 1):S101-S107.

    Article  PubMed  CAS  Google Scholar 

  26. Froguel P, Zouali H, Vionnet N, et al.: Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med 1993, 328:697–702.

    Article  PubMed  CAS  Google Scholar 

  27. Pontoglio M, Barra J, Hadchouel M, et al.: Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996, 84:575–585.

    Article  PubMed  CAS  Google Scholar 

  28. Lee YH, Sauer B, Gonzalez FJ: Laron dwarfism and noninsulin- dependent diabetes mellitus in the Hnf-1alpha knockout mouse. Mol Cell Biol 1998, 18:3059–3068.

    PubMed  CAS  Google Scholar 

  29. Hiraiwa H, Pan C-J, Lin B, et al.: A molecular link between the common phenotypes of type 1 glycogen storage disease and HNF1-alpha-null mice. J Biol Chem 2001, 276:7963–7967.

    Article  PubMed  CAS  Google Scholar 

  30. Shih DQ, Bussen M, Sehayek E, et al.: Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 2001, 27:375–382. The authors studied the molecular cause of hypercholesterolemia in HNF-1a-deficient mice using oligonucleotide microarrays. They showed that HNF-1a is a key regulator of multiple pathways essential for the maintenance of normal plasma cholesterol levels, including HDL cholesterol metabolism, bile acid synthesis, and bile acid uptake by the liver, intestines, and kidney.

    Article  PubMed  CAS  Google Scholar 

  31. Dukes ID, Sreenan S, Roe MW, et al.: Defective pancreatic beta-cell glycolytic signaling in hepatocyte nuclear factor- 1alpha-deficient mice. J Biol Chem 1998, 273:24457–24464. Physiologic studies from isolated HNF-1a-deficient islets enabled the authors to characterize the insulin secretion defect in HNF-1a null mice. Using different insulin secretagogues, they showed that HNF-1a diabetes results from defective b-cell glycolytic signaling.

    Article  PubMed  CAS  Google Scholar 

  32. Shih DQ, Screenan S, Munoz KN, et al.: Loss of HNF-1a function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 2001, 50:2472–2480.

    Article  PubMed  CAS  Google Scholar 

  33. Yamagata K, Yang Q, Yamamoto K, et al.: Mutation P291fsinsC in the transcription factor hepatocyte nuclear factor-1alpha is dominant negative. Diabetes 1998, 47:1231–1235.

    Article  PubMed  CAS  Google Scholar 

  34. Kaisaki PJ, Menzel S, Lindner T, et al.: Mutations in the hepatocyte nuclear factor-1alpha gene in MODY and early-onset NIDDM: evidence for a mutational hotspot in exon 4. Diabetes 1997, 46:528–535. [Published erratum appears in Diabetes 1997, 46:1230.]

    Article  PubMed  CAS  Google Scholar 

  35. Hegele RA, Cao H, Harris SB, et al.: The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 1999, 84:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  36. Lehto M, Tuomi T, Mahtani MM, et al.: Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J Clin Invest 1997, 99:582–591.

    Article  PubMed  CAS  Google Scholar 

  37. Hansen T, Eiberg H, Rouard M, et al.: Novel MODY3 mutations in the hepatocyte nuclear factor-1alpha gene: evidence for a hyperexcitability of pancreatic beta-cells to intravenous secretagogues in a glucose-tolerant carrier of a P447L mutation. Diabetes 1997, 46:726–730.

    Article  PubMed  CAS  Google Scholar 

  38. Frayling TM, Evans JC, Bulman MP, et al.: beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001, 50(suppl 1):S94-S100.

    Article  PubMed  CAS  Google Scholar 

  39. Dutta S, Gannon M, Peers B, et al.: PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc Natl Acad Sci U S A 2001, 98:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  40. Ohlsson H, Karlsson K, Edlund T: IPF1, da homeodomaincontaining transactivator of the insulin gene. EMBO J 1993, 12:4251–4259.

    PubMed  CAS  Google Scholar 

  41. Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoterfactor 1 is required for pancreas development in mice. Nature 1994, 371:606–609.

    Article  PubMed  CAS  Google Scholar 

  42. Ahlgren U, Jonsson J, Jonsson L, et al.: beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998, 12:1763–1768. Describes mice deficient in PDX-1 expression specifically in pancreatic b-cells using the Cre/loxP recombinase system. The study shows that in addition to an early requirement of PDX-1 in pancreas formation, PDX function is required later in the differentiation of different endocrine cell types of the islet, in maintaining islet pattern of hormone expression, and in maintaining normoglycemia.

    PubMed  CAS  Google Scholar 

  43. Hart AW, Baeza N, Apelqvist A, Edlund H: Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 2000, 408:864–868.

    Article  PubMed  CAS  Google Scholar 

  44. Stoffers DA, Stanojevic V, Habener JF: Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J Clin Invest 1998, 102:232–241.

    PubMed  CAS  Google Scholar 

  45. Hani EH, Stoffers DA, Chevre JC, et al.: Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 1999, 104:R41–48.

    PubMed  CAS  Google Scholar 

  46. Macfarlane WM, Frayling TM, Ellard S, et al.: Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 1999, 104:R33-R39.

    PubMed  CAS  Google Scholar 

  47. Coffinier C, Thepot D, Babinet C, et al.: Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development 1999, 126:4785–4794.

    PubMed  CAS  Google Scholar 

  48. Barbacci E, Reber M, Ott MO, et al.: Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 1999, 126:4795–4805.

    PubMed  CAS  Google Scholar 

  49. Lindner TH, Njolstad PR, Horikawa Y, et al.: A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 1999, 8:2001–2008.

    Article  PubMed  CAS  Google Scholar 

  50. Bingham C, Bulman MP, Ellard S, et al.: Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 2001, 68:219–224.

    Article  PubMed  CAS  Google Scholar 

  51. Bingham C, Ellard S, Allen L, et al.: Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. Kidney Int 2000, 57:898–907.

    Article  PubMed  CAS  Google Scholar 

  52. Naya FJ, Huang HP, Qiu Y, et al.: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 1997, 11:2323–2334.

    PubMed  CAS  Google Scholar 

  53. Duvillie B, Cordonnier N, Deltour L, et al.: Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci U S A 1997, 94:5137–5140.

    Article  PubMed  CAS  Google Scholar 

  54. Stoffel M: The role of the hepatocyte nuclear factor network in glucose homeostasis. In Molecular Basis of Pancreas Development and Function. Edited by Habener JF, Hussain M. Norwell, MA: Kluwer Academic Publishers; 2001:255–274.

    Google Scholar 

  55. Duncan SA, Navas MA, Dufort D, et al.: Regulation of a transcription factor network required for differentiation and metabolism. Science 1998, 281:692–695.

    Article  PubMed  CAS  Google Scholar 

  56. Gerrish K, Gannon M, Shih D, et al.: Pancreatic beta cellspecific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3beta sites. J Biol Chem 2000, 275:3485–3492.

    Article  PubMed  CAS  Google Scholar 

  57. Ben-Shushan E, Marshak S, Shoshkes M, et al.: A Ppncreatic beta-cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3beta (HNF-3beta), HNF-1alpha, and SPs transcription factors. J Biol Chem 2001, 276:17533–17540.

    Article  PubMed  CAS  Google Scholar 

  58. Ballinger SW, Shoffner JM, Hedaya EV, et al.: Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet 1992, 1:11–15.

    Article  PubMed  CAS  Google Scholar 

  59. Guillausseau PJ, Massin P, Dubois-LaForgue D, et al.: Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 2001, 134:721–728.

    PubMed  CAS  Google Scholar 

  60. Inoue H, Tanizawa Y, Wasson J, et al.: A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998, 20:143–148.

    Article  PubMed  CAS  Google Scholar 

  61. Delepine M, Nicolino M, Barrett T, et al.: EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000, 25:406–409.

    Article  PubMed  CAS  Google Scholar 

  62. Labay V, Raz T, Baron D, et al.: Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 1999, 22:300–304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, D.Q., Stoffel, M. Molecular etiologies of mody and other early-onset forms of diabetes. Curr Diab Rep 2, 125–134 (2002). https://doi.org/10.1007/s11892-002-0071-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-002-0071-9

Keywords

Navigation