Skip to main content
Log in

Autonomic Modulation in Heart Failure: Ready for Prime Time?

  • Heart Failure (MR Mehra and E Joyce, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

It has been known for many decades that multiple abnormalities of the autonomic nervous system (ANS) are present in heart failure (HF). Moreover, many of the effective therapies currently used to treat HF have either direct or indirect effects on the ANS. While therapies that block over-activity of the sympathetic nervous system are now standard of care, much less well studied are therapies aimed at augmenting the parasympathetic nervous system. This review will cover recent and ongoing investigations targeting modulation of the ANS, especially highlighting new and ongoing studies directed toward augmenting parasympathetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gossage AM, Braxton Hicks JA. On auricular fibrillation. Q J Med. 1913;6:435–40.

    Google Scholar 

  2. Waagstein F et al. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J. 1975;37(10):1022–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bibevski S, Dunlap ME. Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev. 2011;16(2):129–35.

    Article  PubMed  Google Scholar 

  4. Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39(5):801–5.

    CAS  PubMed  Google Scholar 

  5. Ponikowski P et al. Heart rhythms, ventricular arrhythmias, and death in chronic heart failure. J Card Fail. 1996;2(3):177–83.

    Article  CAS  PubMed  Google Scholar 

  6. Kuck KH et al. New devices in heart failure: an European Heart Rhythm Association report: developed by the European Heart Rhythm Association; endorsed by the Heart Failure Association. Europace. 2014;16(1):109–28.

    Article  PubMed  Google Scholar 

  7. Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J. 2015;36:1974–82. This is a thorough review of the autonomic nervous system in HF, including pathways and mechanisms known to be abnormal in HF.

    Article  PubMed  Google Scholar 

  8. Cohn JN et al. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail. 2003;5(5):659–67.

    Article  CAS  PubMed  Google Scholar 

  9. Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22):1659–67.

    Article  Google Scholar 

  10. Poole-Wilson PA et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362(9377):7–13.

    Article  CAS  PubMed  Google Scholar 

  11. Lipov EG et al. A unifying theory linking the prolonged efficacy of the stellate ganglion block for the treatment of chronic regional pain syndrome (CRPS), hot flashes, and posttraumatic stress disorder (PTSD). Med Hypotheses. 2009;72(6):657–61.

    Article  PubMed  Google Scholar 

  12. Schwartz PJ, Stone HL, Brown AM. Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am Heart J. 1976;92(5):589–99.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz PJ, Zaza A. The rational basis and the clinical value of selective cardiac sympathetic denervation in the prevention of malignant arrhythmias. Eur Heart J. 1986;7(Suppl A):107–18.

    PubMed  Google Scholar 

  14. Mullenheim J et al. Left stellate ganglion block has only small effects on left ventricular function in a wake dogs before and after induction of heart failure. Anesth Analg. 2000;91(4):787–92.

    Article  CAS  PubMed  Google Scholar 

  15. Bhatt DL et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  16. Davies JE et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.

    Article  PubMed  Google Scholar 

  17. Burchell AE et al. Chemohypersensitivity and autonomic modulation of venous capacitance in the pathophysiology of acute decompensated heart failure. Curr Heart Fail Rep. 2013;10(2):139–46. This review summarizes the pathophysiological links between abnormalities of chemoreflexes in HF and activation of the sympathetic nervous system leading to decompensating HF.

    Article  CAS  PubMed  Google Scholar 

  18. Paton JF et al. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension. 2013;61(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  19. Nakayama K. Surgical removal of the carotid body for bronchial asthma. Dis Chest. 1961;40:595–604.

    Article  CAS  PubMed  Google Scholar 

  20. Marcus NJ et al. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J Physiol. 2014;592(Pt 2):391–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Niewinski P et al. Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure. Exp Physiol. 2014;99(3):552–61.

    Article  CAS  PubMed  Google Scholar 

  22. Olshansky B et al. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008;118(8):863–71.

    Article  PubMed  Google Scholar 

  23. Desai MY et al. Pharmacologic modulation of parasympathetic activity in heart failure. Heart Fail Rev. 2011;16(2):179–93.

    Article  CAS  PubMed  Google Scholar 

  24. Dibner-Dunlap ME et al. The long-term increase of baseline and reflexly augmented levels of human vagal-cardiac nervous activity induced by scopolamine. Circulation. 1985;71(4):797–804.

    Article  CAS  PubMed  Google Scholar 

  25. Venkatesh G et al. Double blind placebo controlled trial of short term transdermal scopolamine on heart rate variability in patients with chronic heart failure. Heart. 1996;76(2):137–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lataro RM et al. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. Am J Physiol Regul Integr Comp Physiol. 2013;305(8):R908–16.

    Article  CAS  PubMed  Google Scholar 

  27. Chen A, Chen YM. Donepezil, a potential therapeutic agent for heart failure. Eur J Heart Fail. 2015;17(2):233.

    Article  PubMed  Google Scholar 

  28. Shimizu S et al. Medetomidine, an alpha(2)-adrenergic agonist, activates cardiac vagal nerve through modulation of baroreflex control. Circ J Off J Jpn Circ Soc. 2012;76(1):152–9.

    CAS  Google Scholar 

  29. Sabbah HN. Electrical vagus nerve stimulation for the treatment of chronic heart failure. Cleve Clin J Med. 2011;78 Suppl 1:S24–9.

    Article  PubMed  Google Scholar 

  30. Zhang Y et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2(6):692–9.

    Article  CAS  PubMed  Google Scholar 

  31. Li M et al. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4.

    Article  PubMed  Google Scholar 

  32. Premchand RK et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20(11):808–16.

    Article  PubMed  Google Scholar 

  33. Zannad F et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36(7):425–33.

    Article  PubMed Central  PubMed  Google Scholar 

  34. De Ferrari GM et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55.

    Article  PubMed  Google Scholar 

  35. Hauptman PJ, Gottlieb SS. Clinical trial design in contemporary device studies in heart failure: is there a gold standard? J Card Fail. 2014;20(4):223–8.

    Article  PubMed  Google Scholar 

  36. Hauptman PJ et al. Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J. 2012;163(6):954–62. e1.

    Article  PubMed  Google Scholar 

  37. Chen M et al. Noninvasive vagus nerve stimulation: a novel promising modulator for cardiac autonomic nerve system dysfunction. Int J Cardiol. 2015;187:338–9.

    Article  PubMed  Google Scholar 

  38. Stavrakis S et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65(9):867–75.

    Article  PubMed  Google Scholar 

  39. Tse HF et al. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): first-in-man experience. Heart Rhythm Off J Heart Rhythm Soc. 2015;12(3):588–95.

    Article  Google Scholar 

  40. Hoppe UC et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.

    Article  PubMed  Google Scholar 

  41. Abraham WT et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015;3(6):487–96.

    Article  PubMed  Google Scholar 

  42. Georgakopoulos D et al. Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Card Fail. 2011;17(2):167–78.

    Article  PubMed  Google Scholar 

  43. Durand Mde T et al. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R418–27.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mark E. Dunlap reports grants from Medtronic, Inc. and BioControl Medical, Inc.

Anju Bhardwaj declares that he has no conflict of interest.

Paul J. Hauptman is a member of the Steering Committee of the INOVATE Study, funded by BioControl Medical (Yehud, Israel).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Dunlap.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunlap, M.E., Bhardwaj, A. & Hauptman, P.J. Autonomic Modulation in Heart Failure: Ready for Prime Time?. Curr Cardiol Rep 17, 103 (2015). https://doi.org/10.1007/s11886-015-0652-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0652-2

Keywords

Navigation