Skip to main content
Log in

Advances in Nuclear Cardiac Instrumentation with a View Towards Reduced Radiation Exposure

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Recent advances in nuclear cardiology instrumentation have enabled myocardial perfusion imaging (MPI) with improved image quality and faster scan times. These developments also can be exploited to reduce the effective radiation dose to the patient. In this review, we discuss these technologies including new single photon emission computed tomography (SPECT) and positron emission tomography (PET) scanners, as well as novel reconstruction software with regard to their potential for the reduction of the patient radiation dose. New advances in nuclear cardiology instrumentation will allow routine rest/stress MPI imaging with low radiation doses (<5 mSv) and fast imaging times, even by the software-only solutions. It is possible to further reduce the MPI radiation dose to less than 2 to 3 mSv range with standard acquisition times. PET perfusion imaging also can be performed with very low doses especially by the three-dimensional scanners allowing hybrid PET/computed tomographic angiography (CTA) imaging with low overall dose. In addition, stress-only protocols can be utilized to further reduce the radiation dose and the overall test time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol. 2009;16(2):255–76. This is an in depth-review of the new technologies for MPI.

    Article  PubMed  Google Scholar 

  2. Tubiana M, Feinendegen LE, Yang C, Kaminski JM. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology. 2009;251(1):13–22.

    Article  PubMed  Google Scholar 

  3. Laskey WK, Feinendegen LE, Neumann RD, Dilsizian V. Low-level ionizing radiation from noninvasive cardiac imaging: can we extrapolate estimated risks from epidemiologic data to the clinical setting? JACC Cardiovasc Imaging. 2010;3(5):517–24.

    Article  PubMed  Google Scholar 

  4. Gunter DL. Gamma Camera Collimator Characteristics and Design. In: Henkin RE, editor. Nuclear Medicine, vol. 1. Philadelphia, PA: Elsevier; 2006. p. 107–26.

    Google Scholar 

  5. Sharir T, Slomka P, Hayes S, et al. Multicenter trial of high-speed vs. Conventional SPECT Imaging:Quantitive Results of Myocardial Perfusion and Left Ventricular function. J Am Coll Cardiol. 2010;4;55(18):1965–74.

    Google Scholar 

  6. Maddahi J, Mendez R, Mahmarian JJ, et al. Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol. 2009;16(3):351–7.

    Article  PubMed  Google Scholar 

  7. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging: Initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovascular Imaging. 2008;1(2):156–63.

    Article  PubMed  Google Scholar 

  8. Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol. 1994;39:425–37.

    Article  PubMed  CAS  Google Scholar 

  9. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. Nuclear Science, IEEE Transactions on. 2003;50(3):315–20.

    Article  Google Scholar 

  10. Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol. 2004;49(19):4579–92.

    Article  PubMed  Google Scholar 

  11. Volokh L, Hugg J, Blevis I, Asma E, Jansen F, Manjeshwar R. Effect of detector energy response on image quality of myocardial perfusion SPECT. Paper presented at: IEEE Nuclear Science Symposium and Medical Imaging conference; 19–26, 2008; Dresden.

  12. Herzog BA, Buechel RR, Husmann L, et al. Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med. 2010;51(10):1539–44.

    Article  PubMed  Google Scholar 

  13. Slomka P, Berman D, Germano G. New imaging protocols for new single photon emission CT technologies. Curr Cardiovasc Imaging Rep. 2010;3(3):162–70.

    Article  PubMed  Google Scholar 

  14. Lau YH, Hutton BF, Beekman FJ. Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction. Eur J Nucl Med. 2001;28(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  15. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets ofprojection data. Medical Imaging, IEEE Transactions on. 1994;13(4):601–9.

    Article  CAS  Google Scholar 

  16. Ultraspect. www.UltraSPECT.com. Accessed 25 Jan 2012.

  17. Borges-Neto SPR, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol. 2007;14:555–65.

    Article  PubMed  Google Scholar 

  18. DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol. 2009;16(5):736–52. Software-only reconstruction improvement allows quarter-time acqusition of the data obtained on the standard SPECT camera.

    Article  PubMed  Google Scholar 

  19. Vija H, Chapman J, Ray M. IQ•SPECT technology White Paper. Siemens Medical Solutions USA Molecular Imaging; 2008:1–7.

  20. Bateman TM, Heller GV, McGhie AI, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99 m SPECT imaging. J Nucl Cardiol. 2009;16(5):726–35.

    Article  PubMed  Google Scholar 

  21. Valenta I, Treyer V, Husmann L, et al. New reconstruction algorithm allows shortened acquisition time for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2010;37(4):750–7.

    Article  PubMed  Google Scholar 

  22. Gutstein A, Solodky A, Mats I, et al. Feasibility of myocardial perfusion SPECT with prone and half-time imaging. Nucl Med Commun. 2011;32(5):386–91.

    Google Scholar 

  23. Ali I, Ruddy TD, Almgrahi A, Anstett FG, Wells RG. Half-Time SPECT Myocardial Perfusion Imaging with Attenuation Correction. J Nucl Med. 2009;50(4):554–62.

    Article  PubMed  Google Scholar 

  24. Henzlova M, Duvall W. The future of SPECT MPI: Time and dose reduction. J Nucl Cardiol. 2011;18(4):580–7.

    Article  PubMed  Google Scholar 

  25. Duvall W, Croft L, Godiwala T, Ginsberg E, George T, Henzlova M. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera. J Nucl Cardiol. 2010;17(6):1009–14.

    Article  PubMed  Google Scholar 

  26. Duvall W, Croft L, Ginsberg E, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol. 2011;18(5):847–57. This is a clinical demonstration of the low-dose imaging with the new multi-pinhole camera.

    Article  PubMed  Google Scholar 

  27. Gimelli A, Bottai M, Genovesi D, Giorgetti A, Di Martino F, Marzullo P. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results. Eur J Nucl Med Mol Imaging. 2012;39(1):83–90.

    Google Scholar 

  28. DePuey E, Bommireddipalli S, Clark J, Leykekhman A, Thompson L, Friedman M. A comparison of the image quality of full-time myocardial perfusion SPECT vs wide beam reconstruction half-time and half-dose SPECT. J Nucl Cardiol. 2011;18(2):273–80.

    Article  PubMed  Google Scholar 

  29. Nkoulou R, Pazhenkottil AP, Kuest SM, et al. Semiconductor Detectors Allow Low-Dose–Low-Dose 1-Day SPECT Myocardial Perfusion Imaging. J Nucl Med. 2011;52(8):1204–9.

    Article  PubMed  Google Scholar 

  30. Berman DS, Kang X, Tamarappoo B, et al. Stress thallium-201/rest technetium-99 m sequential dual isotope high-speed myocardial perfusion imaging. JACC: Cardiovascular Imaging. 2009;2(3):273–82.

    Article  PubMed  Google Scholar 

  31. Germano G, Slomka PJ, Berman DS. Attenuation correction in cardiac SPECT: the boy who cried wolf? J Nucl Cardiol. 2007;14(1):25–35.

    Article  PubMed  Google Scholar 

  32. Einstein AJ, Johnson LL, Bokhari S, et al. Agreement of Visual Estimation of Coronary Artery Calcium From Low-Dose CT Attenuation Correction Scans in Hybrid PET/CT and SPECT/CT With Standard Agatston Score. J Am Coll Cardiol. 2010;56(23):1914–21.

    Article  PubMed  Google Scholar 

  33. Bai C, Conwell R, Kindem J, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17(3):459–69.

    Article  PubMed  Google Scholar 

  34. Mahmarian JJ. Stress only myocardial perfusion imaging: Is it time for a change? J Nucl Cardiol. 2010;17(4):529–35.

    Article  PubMed  Google Scholar 

  35. Duvall WL, Wijetunga MN, Klein TM, et al. The prognosis of a normal stress-only Tc-99 m myocardial perfusion imaging study. J Nucl Cardiol. 2010;17(3):370–7.

    Article  PubMed  Google Scholar 

  36. Duvall WL, Wijetunga MN, Klein TM, et al. Stress-Only Tc-99 m Myocardial Perfusion Imaging in an Emergency Department Chest Pain Unit. J Emerg Med. Aug 27 2011 (in press).

  37. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol. 2010;55(3):221–30.

    Article  PubMed  Google Scholar 

  38. •• Nakazato R, Tamarappoo BK, Kang X, et al. Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography. J Nucl Med. Nov 2010;51(11):1724–31. This is a fully quantitive analysis of supine and upright MPI data from the new fast SPECT system with angiographic validation.

    Article  PubMed  Google Scholar 

  39. Nishina H, Slomka PJ, Abidov A, et al. Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med. 2006;47(1):51–8.

    PubMed  Google Scholar 

  40. Husmann L, Herzog BA, Gaemperli O, et al. Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only single-photon emission computed tomography/computed tomography hybrid imaging: comparison of prospective electrocardiogram-triggering vs. retrospective gating. Eur Hear J. 2009;30(5):600.

    Article  Google Scholar 

  41. Klein R, Beanlands R, deKemp R. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol. 2010;17(4):555–70.

    Article  PubMed  Google Scholar 

  42. Esteves F, Nye J, Khan A, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol. 2010;17(2):247–53.

    Article  PubMed  Google Scholar 

  43. Knešaurek K, Machac J, Krynyckyi BR, Almeida OD. Comparison of 2-Dimensional and 3-Dimensional 82Rb Myocardial Perfusion PET Imaging. J Nucl Med. 2003;44(8):1350–6.

    PubMed  Google Scholar 

  44. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89.

    Article  PubMed  CAS  Google Scholar 

  45. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.

    Article  PubMed  Google Scholar 

  46. Le Meunier L, Slomka P, Dey D, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol. 2010;17(3):414–26.

    Article  PubMed  Google Scholar 

  47. Le Meunier L, Slomka PJ, Dey D, et al. Motion frozen (18)F-FDG cardiac PET. J Nucl Cardiol. 2011;18(2):259–66.

    Article  PubMed  Google Scholar 

  48. Slomka PJ, Nishina H, Berman DS, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med. 2004;45(7):1128–34.

    PubMed  Google Scholar 

  49. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med. 2007;48(5):783–93.

    Article  PubMed  Google Scholar 

  50. Schwaiger M, Ziegler SI, Nekolla SG. PET/CT challenge for the non-invasive diagnosis of coronary artery disease. Eur J Radiol. 2010;73(3):494–503.

    Article  PubMed  Google Scholar 

  51. Senthamizhchelvan S, Bravo PE, Esaias C, et al. Human Biodistribution and Radiation Dosimetry of 82Rb. J Nucl Med. 2010;51(10):1592–9.

    Article  PubMed  Google Scholar 

  52. Knuuti J. Integrated positron emission tomography/computed tomography (PET/CT) in coronary disease. Heart. 2009;95(17):1457–63.

    Article  PubMed  Google Scholar 

  53. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease/Clinical Perspective. Circulation. 2010;122(6):603–13.

    Article  PubMed  CAS  Google Scholar 

  54. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med. 2010;51(1):46–51.

    Article  PubMed  Google Scholar 

  55. Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging. 2010;37(4):773–78.

    Google Scholar 

  56. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.

    Article  PubMed  Google Scholar 

  57. Fiechter M, Ghadri J, Kuest S, et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur J Nucl Med Mol Imaging. 2011;38(11):2025–30.

    Article  PubMed  CAS  Google Scholar 

  58. Venero CV, Heller GV, Bateman TM, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol. 2009;16(5):714–25.

    Article  PubMed  Google Scholar 

  59. Gimelli A, Bottai M, Giorgetti A, et al. Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: a pilot study. Circ Cardiovasc Imaging. 2011;4(1):51–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Andrew Einstein for providing the template for Fig. 3.

Disclosure

Conflicts of interest: P.J. Slomka: has received grant support from the National Institutes of Health, and has received royalties from Cedars-Sinai Software; D. Dey: has received grant support from the American Heart Association; W.L. Duvall: none; M.J. Henzlova: none; D.S. Berman: has been a consultant for Lantheus; has received grant support from Lantheus Medical Imaging, Astellas Healthcare, GE Healthcare, Siemens, Cardiac Therapeutics Inc.; has received honoraria from IBA Molecular and Astellas Healthcare; has received royalties from Cedars-Sinai Software; and has received money from Spectrum Dynamics; G. Germano: has received royalties from Cedars-Sinai Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr J. Slomka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slomka, P.J., Dey, D., Duvall, W.L. et al. Advances in Nuclear Cardiac Instrumentation with a View Towards Reduced Radiation Exposure. Curr Cardiol Rep 14, 208–216 (2012). https://doi.org/10.1007/s11886-012-0248-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-012-0248-z

Keywords

Navigation