Skip to main content
Log in

Nuclear Receptors in Vascular Biology

  • Vascular Biology (T. Hla, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294(5548):1866–70.

    Article  CAS  PubMed  Google Scholar 

  2. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126(4):789–99.

    Article  CAS  PubMed  Google Scholar 

  3. Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem. 1999;274(24):17042–8.

    Article  CAS  PubMed  Google Scholar 

  4. Piqueras L, Reynolds AR, Hodivala-Dilke KM, et al. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  5. Swales KE, Moore R, Truss NJ, et al. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovasc Res. 2012;93(4):674–81. This paper shows the expression of PXR in human and rodent vascular cells and tissue. Acute vascular activation of PXR led to a co-ordinate programme of drug metabolism, transport, and oxidant defence.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci U S A. 2004;101(10):3668–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zoete V, Grosdidier A, Michielin O. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta. 2007;1771(8):915–25.

    Article  CAS  PubMed  Google Scholar 

  8. Glass CK. Going nuclear in metabolic and cardiovascular disease. J Clin Invest. 2006;116(3):556–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pascual G, Glass CK. Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metabol TEM. 2006;17(8):321–7.

    Article  CAS  Google Scholar 

  10. Stein S, Oosterveer MH, Mataki C, et al. SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport. Cell Metab. 2014;20(4):603–13.

    Article  CAS  PubMed  Google Scholar 

  11. Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood. 2004;104(5):1361–8.

    Article  CAS  PubMed  Google Scholar 

  12. Moraes LA, Paul-Clark MJ, Rickman A, Flower RJ, Goulding NJ, Perretti M. Ligand-specific glucocorticoid receptor activation in human platelets. Blood. 2005;106(13):4167–75.

    Article  CAS  PubMed  Google Scholar 

  13. Ali FY, Davidson SJ, Moraes LA, et al. Role of nuclear receptor signaling in platelets: antithrombotic effects of PPARbeta. Faseb J. 2006;20(2):326–8.

    CAS  PubMed  Google Scholar 

  14. Moraes LA, Swales KE, Wray JA, et al. Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets. Blood. 2007;109(9):3741–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Edwards DP. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J Mammary Gland Biol Neoplasia. 2000;5(3):307–24.

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy C, Lieggi NT, Barry D, et al. Macrophage PPAR gamma Co-activator-1 alpha participates in repressing foam cell formation and atherosclerosis in response to conjugated linoleic acid. EMBO Mol Med. 2013;5(9):1443–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lee CH, Chawla A, Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science. 2003;302(5644):453–7.

    Article  CAS  PubMed  Google Scholar 

  18. Nazari-Jahantigh M, Egea V, Schober A, Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis. J Molecul Cellul Cardiol. 2014. doi:10.1016/j.yjmcc.2014.10.021

  19. Zhao R, Feng J. He G: miR-613 regulates cholesterol efflux by targeting LXRalpha and ABCA1 in PPARgamma activated THP-1 macrophages. Biochem Biophys Res Commun. 2014;448(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  20. Chakrabarti S, Morton JS, Davidge ST. Mechanisms of estrogen effects on the endothelium: an overview. Can J Cardiol. 2014;30(7):705–12.

    Article  PubMed  Google Scholar 

  21. Spoletini I, Caprio M, Vitale C, Rosano GM. Androgens and cardiovascular disease: gender-related differences. Menopause Int. 2013;19(2):82–6.

    PubMed  Google Scholar 

  22. Kaushik M, Sontineni SP, Hunter C. Cardiovascular disease and androgens: a review. Int J Cardiol. 2010;142(1):8–14.

    Article  PubMed  Google Scholar 

  23. Wynne FL, Khalil RA. Testosterone and coronary vascular tone: implications in coronary artery disease. J Endocrinol Invest. 2003;26(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  24. Calza L, Manfredi R, Chiodo F. Dyslipidaemia associated with antiretroviral therapy in HIV-infected patients. J Antimicrob Chemother. 2004;53(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  25. Xiang J, Wang Y, Su K, et al. Ritonavir binds to and downregulates estrogen receptors: molecular mechanism of promoting early atherosclerosis. Exp Cell Res. 2014;327(2):318–30.

    Article  CAS  PubMed  Google Scholar 

  26. Huang CK, Pang H, Wang L, et al. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension. 2014;63(6):1345–53. This paper addresses the role of the androgen receptor in the development of atherosclerosis in the mouse. The authors show targetting the androgen receptor in the monocyte/macrophage lineage, but not endothelial or smooth muscle inhibits atherosclerosis development.

    Article  CAS  PubMed  Google Scholar 

  27. McCurley A, McGraw A, Pruthi D, Jaffe IZ. Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pfluger Archiv Eur J Physiol. 2013;465(12):1661–70. An excellent review covering the role of mineralocorticoid receptors in vascular tissue.

    Article  CAS  Google Scholar 

  28. Schafer N, Lohmann C, Winnik S, et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J. 2013;34(45):3515–24.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dussault I, Forman BM. The nuclear receptor PXR: a master regulator of “homeland” defense. Crit Rev Eukaryot Gene Expr. 2002;12(1):53–64.

    Article  CAS  PubMed  Google Scholar 

  30. Fisslthaler B, Hinsch N, Chataigneau T, et al. Nifedipine increases cytochrome P4502C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries. Hypertension. 2000;36(2):270–5.

    Article  CAS  PubMed  Google Scholar 

  31. Hoebel BG, Steyrer E, Graier WF. Origin and function of epoxyeicosatrienoic acids in vascular endothelial cells: more than just endothelium-derived hyperpolarizing factor? Clin Exp Pharmacol Physiol. 1998;25(10):826–30.

    Article  CAS  PubMed  Google Scholar 

  32. Gerlach E, Nees S, Becker BF. The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol. 1985;80(5):459–74.

    Article  CAS  PubMed  Google Scholar 

  33. Albermann N, Schmitz-Winnenthal FH, Z’Graggen K, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol. 2005;70(6):949–58.

    Article  CAS  PubMed  Google Scholar 

  34. De Marino S, Ummarino R, D’Auria MV, et al. 4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity. Steroids. 2012;77(5):484–95.

    Article  PubMed  Google Scholar 

  35. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.

    Article  CAS  PubMed  Google Scholar 

  36. El-Sankary W, Gibson GG, Ayrton A, Plant N. Use of a reporter gene assay to predict and rank the potency and efficacy of CYP3A4 inducers. Drug Metabol Disp Biol Fate Chem. 2001;29(11):1499–504.

    CAS  Google Scholar 

  37. Matic M, Mahns A, Tsoli M, Corradin A, Polly P, Robertson GR. Pregnane X receptor: promiscuous regulator of detoxification pathways. Int J Biochem Cell Biol. 2007;39(3):478–83.

    Article  CAS  PubMed  Google Scholar 

  38. Sonoda J, Chong LW, Downes M, et al. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc Natl Acad Sci U S A. 2005;102(6):2198–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lau WC, Gurbel PA. Antiplatelet drug resistance and drug-drug interactions: role of cytochrome P450 3A4. Pharm Res. 2006;23(12):2691–708.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Fang X, Zhou J, et al. Shear stress activation of nuclear receptor PXR in endothelial detoxification. Proc Natl Acad Sci U S A. 2013;110(32):13174–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sui Y, Xu J, Rios-Pilier J, Zhou C. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. J Lipid Res. 2011;52(9):1652–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhou C, King N, Chen KY, Breslow JL. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J Lipid Res. 2009;50(10):2004–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. He J, Gao J, Xu M, et al. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes. 2013;62(6):1876–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Spruiell K, Richardson RM, Cullen JM, Awumey EM, Gonzalez FJ, Gyamfi MA. Role of pregnane X receptor in obesity and glucose homeostasis in male mice. J Biol Chem. 2014;289(6):3244–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Asgary S, Solhpour A, Parkhideh S, Madani H, Mahzouni P, Kabiri N. Effect of hydroalcoholic extract of Hypericum perforatum on selected traditional and novel biochemical factors of cardiovascular diseases and atherosclerotic lesions in hypercholesterolemic rabbits: a comparison between the extract and lovastatin. J Pharm Bioall Sci. 2012;4(3):212–8.

    Article  Google Scholar 

  46. Ma Y, Liu D. Activation of pregnane X receptor by pregnenolone 16 alpha-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS One. 2012;7(6):e38734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sui Y, Park SH, Helsley RN, et al. Bisphenol A increases atherosclerosis in pregnane X receptor-humanized ApoE deficient mice. J Am Heart Assoc. 2014;3(2):e000492.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev. 1999;13(8):1037–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jonk LJ, de Jonge ME, Pals CE, et al. Cloning and expression during development of three murine members of the COUP family of nuclear orphan receptors. Mech Dev. 1994;47(1):81–97.

    Article  CAS  PubMed  Google Scholar 

  50. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435(7038):98–104.

    Article  CAS  PubMed  Google Scholar 

  51. Li L, Xie X, Qin J, et al. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metab. 2009;9(1):77–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Takamoto N, You LR, Moses K, et al. COUP-TFII is essential for radial and anteroposterior patterning of the stomach. Development. 2005;132(9):2179–89.

    Article  CAS  PubMed  Google Scholar 

  53. Qin J, Tsai MJ, Tsai SY. Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One. 2008;3(9):e3285.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lee CT, Li L, Takamoto N, et al. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development. Mol Cell Biol. 2004;24(24):10835–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hamers AA, Hanna RN, Nowyhed H, Hedrick CC, de Vries CJ. NR4A nuclear receptors in immunity and atherosclerosis. Curr Opin Lipidol. 2013;24(5):381–5. An excellent review covering the emerging roles of the NR4A family in atherosclerosis.

    CAS  PubMed  Google Scholar 

  56. Hu YW, Zhang P, Yang JY, et al. Nur77 decreases atherosclerosis progression in apoE(−/−) mice fed a high-fat/high-cholesterol diet. PLoS One. 2014;9(1):e87313.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Qin Q, Chen M, Yi B, et al. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells. J Mol Cell Cardiol. 2014;77C:20–8.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

David Bishop-Bailey declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bishop-Bailey.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop-Bailey, D. Nuclear Receptors in Vascular Biology. Curr Atheroscler Rep 17, 27 (2015). https://doi.org/10.1007/s11883-015-0507-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0507-8

Keywords

Navigation