Skip to main content

Advertisement

Log in

Pharmacogenetics of lipid-lowering therapies

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease is associated with nonmodifiable risk factors such as age, gender, and genetic background, and with modifiable risk factors such as lipid concentrations. Lowering serum lipid levels has been demonstrated to slow the progression of, or even induce regression in, atherosclerosis. However, like any other drug treatment, the magnitude of plasma lipid responses to drug therapies varies considerably among individuals. Pharmacogenetics provides the experimental basis to understand the variability in response to drugs as a function of the individual genetic makeup. Information from small clinical trials reveals that several candidate genes may hold some promise in our quest to predict individual success to hypolipemic drug treatment. However, the current clinical relevance of this knowledge is quite limited due to the small effects observed for each of the genetic markers examined. Future progress in this area will be driven by studying gene-gene and gene-treatment interactions in much larger patient populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans DA, McLeod HL, Pritchard S, Tariq M, Mobarek A: Interethnic variability in human drug responses. Drug Metab Dispos 2001, 29:606–610.

    PubMed  Google Scholar 

  2. Anonymous: Genes, drugs and race. Nat Genet 2001, 29:239–240.

  3. McLeod HL, Evans WE: Pharmacogenomics: unlocking the human genome for better drug therapy. Ann Rev Pharmacol Toxicol 2001, 41:101–121.

    Article  CAS  Google Scholar 

  4. Evans WE, Johnson JA: Pharmacogenomics: the inherited basis for interindividual differences in drug response. Ann Rev Genom Hum Genet 2001, 2:9–39.

    Article  CAS  Google Scholar 

  5. Garrod AE: Inborn Errors in Disease: An Essay. Oxford, New York: Clarendon Press; 1931.

    Google Scholar 

  6. Lazarou J, Pomeranz BH, Corey PN: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998, 279:1200–1205.

    Article  PubMed  CAS  Google Scholar 

  7. Ordovas JM, Schaefer EJ: Treatment of dyslipidemia: genetic interactions with diet and drug therapy. Curr Atheroscler Rep 1999, 1:16–23.

    PubMed  CAS  Google Scholar 

  8. Kwiterovich PO Jr: State-of-the-art update and review: clinical trials of lipid-lowering agents. Am J Cardiol 1998, 82:3U-17U.

    Article  PubMed  CAS  Google Scholar 

  9. Jukema JW, Bruschke AV, van Boven AJ, et al.: Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995, 91:2528–2540.

    PubMed  CAS  Google Scholar 

  10. Brown G, Albers JJ, Fisher LD, Schaefer SM, et al.: Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990, 323:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  11. Herd JA, West MS, Ballantyne C, Farmer J, Gotto AM Jr.: Baseline characteristics of subjects in the Lipoprotein and Coronary Atherosclerosis Study (LCAS) with fluvastatin. Am J Cardiol 1994, 73:42D-49D.

    Article  PubMed  CAS  Google Scholar 

  12. Kuivenhoven JA, Jukema JW, Zwinderman AH, et al.: The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med 1998, 338:86–93.

    Article  PubMed  CAS  Google Scholar 

  13. Kastelein JJ, Groenemeyer BE, Hallman DM, et al.: The Asn9 variant of lipoprotein lipase is associated with the −93G promoter mutation and an increased risk of coronary artery disease. The Regress Study Group. Clin. Genet 1998, 53:27–33.

    Article  PubMed  CAS  Google Scholar 

  14. Sing K, Ballantyne CM, Ferlic L, et al.: Lipoprotein lipase gene mutations, plasma lipid levels, progression/regression of coronary atherosclerosis, response to therapy, and future clinical events. Lipoproteins and Coronary Atherosclerosis Study. Atherosclerosis 1999, 144:435–442.

    Article  PubMed  CAS  Google Scholar 

  15. Kamboh MI, Aston CE, Ferrell RE, Hamman RF: Impact of apolipoprotein E polymorphism in determining inter-individual variation in total cholesterol and low density lipoprotein cholesterol in Hispanics and non-Hispanic whites. Atherosclerosis 1993, 98:201–211.

    Article  PubMed  CAS  Google Scholar 

  16. Ferrieres J, Sing CF, Roy M, Davignon J, Lussier-Cacan S: Apolipoprotein E polymorphism and heterozygous familial hypercholesterolemia. Sex-specific effects. Arterioscler Thromb 1994, 14:1553–1560.

    PubMed  CAS  Google Scholar 

  17. Schaefer EJ, Lamon-Fava S, Johnson S, et al.: Effects of gender and menopausal status on the association of apolipoprotein E phenotype with plasma lipoprotein levels: Results from the Framingham Offspring Study. Arterioscler Thromb 1994, 14:1105–1113.

    PubMed  CAS  Google Scholar 

  18. Somekawa Y, Wakabayashi A: Relationship between apolipoprotein E polymorphism, menopausal symptoms, and serum lipids during hormone replacement therapy. Eur J Obstet Gynecol Reprod Biol 1998, 79:185–191.

    Article  PubMed  CAS  Google Scholar 

  19. Heikkinen AM, Niskanen L, Ryynanen M, et al.: Is the response of serum lipids and lipoproteins to postmenopausal hormone replacement therapy modified by ApoE genotype? Arterioscler Thromb Vasc Biol 1999, 19:402–407.

    PubMed  CAS  Google Scholar 

  20. Tsuda M, Sanada M, Nakagawa H, et al.: Phenotype of apolipoprotein E influences the lipid metabolic response of postmenopausal women to hormone replacement therapy. Maturitas 2001, 38:297–304.

    Article  PubMed  CAS  Google Scholar 

  21. Garry PJ, Baumgartner RN, Brodie SG, et al.: Estrogen replacement therapy, serum lipids, and polymorphism of the apolipoprotein E gene. Clin Chem 1999, 45:1214–1223.

    PubMed  CAS  Google Scholar 

  22. Pedro-Botet J, Schaefer EJ, Bakker-Arkema RG, et al.: Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner. Atherosclerosis 2001, 158:183–193.

    Article  PubMed  CAS  Google Scholar 

  23. Ordovas JM: Gene-diet interaction and plasma lipid response to dietary intervention. Curr Atheroscler Rep 2001, 3:200–208.

    PubMed  CAS  Google Scholar 

  24. Gerdes LU, Gerdes C, Kervinen K, et al.: The apolipoprotein epsilon4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation 2000, 101:1366–1371.

    PubMed  CAS  Google Scholar 

  25. Ballantyne CM, Herd JA, Stein EA, et al.: Apolipoprotein E genotypes and response of plasma lipids and progression-regression of coronary atherosclerosis to lipid-lowering drug therapy. J Am Coll Cardiol 2000, 36:1572–1578.

    Article  PubMed  CAS  Google Scholar 

  26. Krapp A, Ahle S, Kersting S, et al.: Hepatic lipase mediates the uptake of chylomicrons and b- VLDL into cellsvia the LDL receptor-related protein (LRP). J Lipid Res 1996, 37:926–936.

    PubMed  CAS  Google Scholar 

  27. Connelly PW, Maguire GF, Lee M, Little JA: Plasma lipoproteins in familial hepatic lipase deficiency. Arteriosclerosis 1990, 10:40–48.

    PubMed  CAS  Google Scholar 

  28. Breckenridge WC, Little JA, Alaupovic P, et al.: Lipoprotein abnormalities associated with a familial deficiency of hepatic lipase. Atherosclerosis 1982, 45:161–179.

    Article  PubMed  CAS  Google Scholar 

  29. Kuusi T, Saarinen P, Nikkila EA: Evidence for the role of hepatic endothelial lipase in the metabolism of plasma high density lipoprotein2 in man. Atherosclerosis 1980, 36:589–593.

    Article  PubMed  CAS  Google Scholar 

  30. Jansen H, Verhoeven AJ, Weeks L, et al.: Common C-to-T substitution at position -480 of the hepatic lipase promoter associated with a lowered lipase activity in coronary artery disease patients. Arterioscler Thromb Vasc Biol 1997, 17:2837–2842.

    PubMed  CAS  Google Scholar 

  31. Zambon A, Deeb SS, Hokanson JE, Brown BG, Brunzell JD: Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higher HDL2 cholesterol. Arterioscler Thromb Vasc Biol 1998, 18:1723–1729.

    PubMed  CAS  Google Scholar 

  32. Zambon A, Deeb SS, Brown BG, Hokanson JE, Brunzell JD: Common hepatic lipase gene promoter variant determines clinical response to intensive lipid-lowering treatment. Circulation 2001, 103:792–798.

    PubMed  CAS  Google Scholar 

  33. Chaves FJ, Real JT, Garcia-Garcia AB, et al.: Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol. J Clin Endocrinol Metab 2001, 86:4926–4932.

    Article  PubMed  CAS  Google Scholar 

  34. Heath KE, Gudnason V, Humphries SE, Seed M: The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis 1999, 143:41–54.

    Article  PubMed  CAS  Google Scholar 

  35. Ordovas JM: ABC1: the gene for Tangier disease and beyond. Nutr Rev 2000, 58:76–79.

    Article  PubMed  CAS  Google Scholar 

  36. Lutucuta S, Ballantyne CM, Elghannam H, Gotto AM Jr, Marian AJ: Novel polymorphisms in promoter region of atp binding cassette transporter gene and plasma lipids, severity, progression, and regression of coronary atherosclerosis and response to therapy. Circ Res 2001, 88:969–973.

    PubMed  CAS  Google Scholar 

  37. Comings DE, MacMurray JP: Molecular heterosis: a review. Mol Genet Metab 2000, 71:19–31.

    Article  PubMed  CAS  Google Scholar 

  38. Turban S, Fuentes F, Ferlic L, et al.: A prospective study of paraoxonase gene Q/R192 polymorphism and severity, progression and regression of coronary atherosclerosis, plasma lipid levels, clinical events and response to fluvastatin. Atherosclerosis 2001, 154:633–640.

    Article  PubMed  CAS  Google Scholar 

  39. Tomas M, Senti M, Garcia-Faria F, et al.: Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients. Arterioscler ThrombVasc Biol 2000, 20:2113–2119.

    CAS  Google Scholar 

  40. Henney AM, Ye S, Zhang B, et al.: Genetic diversity in the matrix metalloproteinase family. Effects on function and disease progression. Ann NY Acad Sci 2000, 902:27–37.

    Article  PubMed  CAS  Google Scholar 

  41. Dollery CM, McEwan JR, Henney AM: Matrix metalloproteinases and cardiovascular disease. Circ Res 1995, 77:863–868.

    PubMed  CAS  Google Scholar 

  42. Ye S, Watts GF, Mandalia S, Humphries SE, Henney AM: Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J 1995, 73:209–215.

    PubMed  CAS  Google Scholar 

  43. de Maat MP, Jukema JW, Ye S, et al.: Effect of the stromelysin-1 promoter on efficacy of pravastatin in coronary atherosclerosis and restenosis. Am J Cardiol 1999, 83:852–856.

    Article  PubMed  Google Scholar 

  44. Elghannam H, Tavackoli S, Ferlic L, et al.: A prospective study of genetic markers of susceptibility to infection and inflammation, and the severity, progression, and regression of coronary atherosclerosis and its response to therapy. J Mol Med 2000, 78:562–568.

    Article  PubMed  CAS  Google Scholar 

  45. de Maat MP, Kastelein JJ, Jukema JW, et al.: −455G/A polymorphism of the beta-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. REGRESS group. Arterioscler Thromb Vasc Biol 1998, 18:265–271.

    PubMed  Google Scholar 

  46. van Geel PP, Pinto YM, Zwinderman AH, et al.: Increased risk for ischaemic events is related to combined RAS polymorphism. Heart 2001, 85:458–462.

    Article  PubMed  Google Scholar 

  47. Marian AJ, Safavi F, Ferlic L, et al.: Interactions between angiotensin-I converting enzyme insertion/deletion polymorphism and response of plasma lipids and coronary atherosclerosis to treatment with fluvastatin: the lipoprotein and coronary atherosclerosis study. J Am Coll Cardiol 2000, 35:89–95.

    Article  PubMed  CAS  Google Scholar 

  48. Gotto AM Jr: Ongoing clinical trials of statins. Am J Cardiol 2001, 88(suppl 4):36F-40F.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordovas, J.M., Shen, H. Pharmacogenetics of lipid-lowering therapies. Curr Atheroscler Rep 4, 183–192 (2002). https://doi.org/10.1007/s11883-002-0018-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-002-0018-2

Keywords

Navigation