Skip to main content

Advertisement

Log in

New Approaches to Modulating Idiopathic Pulmonary Fibrosis

  • Immune Deficiency and Dysregulation (DP Huston, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Until recently, idiopathic pulmonary fibrosis (IPF) has been a devastating and generally fatal disease with no effective therapeutic. New developments in understanding the biology of the disease include a growing consensus that the lesions are mainly composed of cells that originated from resident fibroblasts. New developments in therapeutics include recommendations against several treatment regimes that have been previously used. On a positive note, the orally available drug pirfenidone has been approved for use in IPF in China, Japan, India, and the European Union, but not yet in the United States. Other possibilities for managing IPF include managing gastrointestinal reflux, and limiting excessive salt intake. A variety of potential therapeutics for IPF are in clinical trials; for instance, in a Phase 1b trial, intravenous injections of a recombinant version of the normal human serum protein Serum Amyloid P (SAP, also known as PTX2) improved lung function in IPF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. Am J Respir Crit Care Med. 2007;176(3):277–84.

    Article  PubMed  Google Scholar 

  2. •• Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. Latest official guidelines for diagnosis and treatment of IPF.

    Article  PubMed  Google Scholar 

  3. • Wells AU. Managing diagnostic procedures in idiopathic pulmonary fibrosis. Eur Respir Rev. 2013;22(128):158–62. Points out difficulties with the diagnosis.

    Article  PubMed  Google Scholar 

  4. Schmidt M, Sun G, Stacey M, Mori L, Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol. 2003;171:380–9.

    PubMed  CAS  Google Scholar 

  5. • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37. Shows the presence of peribronchiolar fibrosis in asthma.

    Article  PubMed  CAS  Google Scholar 

  6. Prasse A, Pechkovsky DV, Toews GB, Jungraithmayr W, Kollert F, Goldmann T, et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. 2006;173(7):781–92.

    Article  PubMed  CAS  Google Scholar 

  7. • Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal. 2013;11(1):29. Shows that signals from human M2a macrophages stimulate proliferation of human (dermal) fibroblasts.

    Article  PubMed  Google Scholar 

  8. Murray LA, Rosada R, Moreira AP, Joshi A, Kramer MS, Hesson DP, et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLoS One. 2010;5(3):e9683.

    Article  PubMed  Google Scholar 

  9. Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Annu Rev Pathol. 2013;8:241–76.

    Article  PubMed  CAS  Google Scholar 

  10. Wight TN, Potter-Perigo S. The extracellular matrix: an active or passive player in fibrosis? Am J Physiol Gastrointest Liver Physiol. 2011;301(6):G950–5.

    Article  PubMed  CAS  Google Scholar 

  11. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A. 2011;108(52):E1475–83.

    Article  PubMed  CAS  Google Scholar 

  12. Bucala R, Spiegel L, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    PubMed  CAS  Google Scholar 

  13. Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep. 2006;8(2):145–50.

    Article  PubMed  CAS  Google Scholar 

  14. Herzog EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38(7):548–56.

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, Scott P, Giuffre J, Shankowsky H, Ghahary A, Tredget E. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest. 2002;82(9):1183–92.

    Article  PubMed  CAS  Google Scholar 

  16. Wang JF, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE. Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair Regen. 2007;15(1):113–21.

    Article  PubMed  Google Scholar 

  17. Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009;2(2):103–21.

    Article  PubMed  CAS  Google Scholar 

  18. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4):e1000371.

    Article  PubMed  Google Scholar 

  19. Hedrich CM, Bream JH. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res. 2010;47(1–3):185–206.

    Article  PubMed  CAS  Google Scholar 

  20. Sode BF, Dahl M, Nielsen SF, Nordestgaard BG. Venous thromboembolism and risk of idiopathic interstitial pneumonia: a nationwide study. Am J Respir Crit Care Med. 2010;181(10):1085–92.

    Article  PubMed  Google Scholar 

  21. Noth I, Anstrom KJ, Calvert SB, de Andrade J, Flaherty KR, Glazer C, et al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(1):88–95.

    Article  PubMed  CAS  Google Scholar 

  22. Peikert T, Daniels CE, Beebe TJ, Meyer KC, Ryu JH. Assessment of current practice in the diagnosis and therapy of idiopathic pulmonary fibrosis. Respir Med. 2008;102(9):1342–8.

    Article  PubMed  CAS  Google Scholar 

  23. Raghu G, Anstrom KJ, King Jr TE, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366(21):1968–77.

    Article  PubMed  CAS  Google Scholar 

  24. Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR. Imatinib treatment for idiopathic pulmonary fibrosis: Randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181(6):604–10.

    Article  PubMed  CAS  Google Scholar 

  25. Malouf MA, Hopkins P, Snell G, Glanville AR. An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology. 2011;16(5):776–83.

    Article  PubMed  Google Scholar 

  26. Raghu G, Behr J, Brown KK, Egan JJ, Kawut SM, Flaherty KR, et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158(9):641–9.

    Article  PubMed  Google Scholar 

  27. Raghu G, Freudenberger TD, Yang S, Curtis JR, Spada C, Hayes J, et al. High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis. Eur Respir J. 2006;27(1):136–42.

    Article  PubMed  CAS  Google Scholar 

  28. Raghu G. Idiopathic pulmonary fibrosis: increased survival with "gastroesophageal reflux therapy": fact or fallacy? Am J Respir Crit Care Med. 2011;184(12):1330–2.

    Article  PubMed  Google Scholar 

  29. Raghu G, Yang ST, Spada C, Hayes J, Pellegrini CA. Sole treatment of acid gastroesophageal reflux in idiopathic pulmonary fibrosis: a case series. Chest. 2006;129(3):794–800.

    Article  PubMed  Google Scholar 

  30. Lee JS, Ryu JH, Elicker BM, Lydell CP, Jones KD, Wolters PJ, et al. Gastroesophageal reflux therapy is associated with longer survival in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(12):1390–4.

    Article  PubMed  Google Scholar 

  31. He FJ, MacGregor GA. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens. 2009;23(6):363–84.

    Article  PubMed  CAS  Google Scholar 

  32. Yuan BX, Leenen FH. Dietary sodium intake and left ventricular hypertrophy in normotensive rats. Am J Physiol. 1991;261(5 Pt 2):H1397–401.

    PubMed  CAS  Google Scholar 

  33. Yu HC, Burrell LM, Black MJ, Wu LL, Dilley RJ, Cooper ME, et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation. 1998;98(23):2621–8.

    Article  PubMed  CAS  Google Scholar 

  34. Strazzullo P, D'Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.

    Article  PubMed  Google Scholar 

  35. He FJ, Burnier M, Macgregor GA. Nutrition in cardiovascular disease: salt in hypertension and heart failure. Eur Heart J. 2011;32(24):3073–80.

    Article  PubMed  CAS  Google Scholar 

  36. Cox N, Pilling D, Gomer RH. NaCl potentiates human fibrocyte differentiation. PLoS One. 2012;7(9):e45674.

    Article  PubMed  CAS  Google Scholar 

  37. Singh TP. Clinical use of sildenafil in pulmonary artery hypertension. Expert Rev Respir Med. 2010;4(1):13–9.

    Article  PubMed  CAS  Google Scholar 

  38. Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363(7):620–8.

    Article  PubMed  Google Scholar 

  39. •• Han MK, Bach DS, Hagan PG, Yow E, Flaherty KR, Toews GB, et al. Sildenafil Preserves Exercise Capacity in Patients With Idiopathic Pulmonary Fibrosis and Right-sided Ventricular Dysfunction. Chest. 2013;143(6):1699–708. Describes the subset of IPF patients for whom sildenafil may be useful.

    Article  PubMed  CAS  Google Scholar 

  40. Iyer SN, Wild JS, Schiedt MJ, Hyde DM, Margolin SB, Giri SN. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med. 1995;125(6):779–85.

    PubMed  CAS  Google Scholar 

  41. Gan Y, Herzog EL, Gomer RH. Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Clin Risk Manag. 2011;7:39–47.

    PubMed  CAS  Google Scholar 

  42. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9.

    Article  PubMed  CAS  Google Scholar 

  43. Raghu G, Thickett DR. Pirfenidone for IPF: pro/con debate; the 'con' viewpoint. Thorax. 2013.

  44. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized controlled trials. PLoS One. 2012;7(10):e47024.

    Article  PubMed  CAS  Google Scholar 

  45. Pilling D, Buckley CD, Salmon M, Gomer RH. Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol. 2003;17(10):5537–46.

    Google Scholar 

  46. Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007;179(6):4035–44.

    PubMed  CAS  Google Scholar 

  47. Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103(48):18284–9.

    Article  PubMed  CAS  Google Scholar 

  48. Castaño AP, Lin S-L, Surowy T, Nowlin BT, Turlapati SA, Patel T, et al. Serum Amyloid P Inhibits Fibrosis Through FcγR-Dependent Monocyte-Macrophage Regulation in Vivo. Sci Transl Med. 2009;1(5):5ra13.

    Article  PubMed  Google Scholar 

  49. Zhang W, Wu J, Qiao B, Xu W, Xiong S. Amelioration of lupus nephritis by serum amyloid P component gene therapy with distinct mechanisms varied from different stage of the disease. PLoS One. 2011;6(7):e22659.

    Article  PubMed  CAS  Google Scholar 

  50. Moreira AP, Cavassani KA, Hullinger R, Rosada RS, Fong DJ, Murray L, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J Allergy Clin Immunol. 2010;4:712–21.

    Article  Google Scholar 

  51. Murray LA, Kramer MS, Hesson DP, Watkins BA, Fey EG, Argentieri RL, et al. Serum amyloid P ameliorates radiation-induced oral mucositis and fibrosis. Fibrogenesis Tissue Repair. 2010;3:11.

    Article  PubMed  Google Scholar 

  52. Ji Z, Ke ZJ, Geng JG. SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Immunol Cell Biol. 2011.

  53. Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int J Biochem Cell Biol. 2011;43(1):154–62.

    Article  PubMed  CAS  Google Scholar 

  54. Naik-Mathuria B, Pilling D, Crawford JR, Gay AN, Smith CW, Gomer RH, et al. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen. 2008;16(2):266–73.

    Article  PubMed  Google Scholar 

  55. Nelson S, Tennent G, Sethi D, Gower P, Ballardie F, Amatayakul-Chantler S, et al. Serum amyloid P component in chronic renal failure and dialysis. Clin Chim Acta. 1991;200(2–3):191–9.

    Article  PubMed  CAS  Google Scholar 

  56. Naylor MC, Lazar DA, Zamora IJ, Mushin OP, Yu L, Brissett AE, et al. Increased in vitro differentiation of fibrocytes from keloid patients is inhibited by serum amyloid P. Wound Repair Regen. 2012;20(3):277–83.

    Article  PubMed  Google Scholar 

  57. Bharadwaj D, Mold C, Markham E, Du Clos TW. Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis. J Immunol. 2001;166(11):6735–41.

    PubMed  CAS  Google Scholar 

  58. Bijl M, Horst G, Bijzet J, Bootsma H, Limburg PC, Kallenberg CG. Serum amyloid P component binds to late apoptotic cells and mediates their uptake by monocyte-derived macrophages. Arthritis Rheum. 2003;48(1):248–54.

    Article  PubMed  CAS  Google Scholar 

  59. Familian A, Zwart B, Huisman HG, Rensink I, Roem D, Hordijk PL, et al. Chromatin-independent binding of serum amyloid P component to apoptotic cells. J Immunol. 2001;167(2):647–54.

    PubMed  CAS  Google Scholar 

  60. Maharjan AS, Roife D, Brazill D, Gomer RH. Serum amyloid P inhibits granulocyte adhesion. Fibrogenesis Tissue Repair. 2013;6(1):2.

    Article  PubMed  CAS  Google Scholar 

  61. Dillingh MR, van den Blink B, Moerland M, van Dongen MG, Levi M, Kleinjan A et al. Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013.

  62. Van Den Blink B, Burggraaf J, Morrison LD, Ginns LC, Wijsenbeek MS, Moerland M, et al. A Phase I Study Of PRM-151 In Patients With Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2013;187:A5705.

    Google Scholar 

  63. Adamali HI, Maher TM. Current and novel drug therapies for idiopathic pulmonary fibrosis. Drug Des Devel Ther. 2012;6:261–72.

    PubMed  CAS  Google Scholar 

  64. Rafii R, Juarez MM, Albertson TE, Chan AL. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis. 2013;5(1):48–73.

    PubMed  Google Scholar 

  65. Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365(12):1079–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Rachel Sterling, Erica Herzog, and Mark Lupher for helpful comments and corrections to the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Richard H. Gomer is a co-founder of, receives royalties from, and holds stock options in Promedior, a company that is developing SAP as a therapeutic for idiopathic pulmonary fibrosis. He is also a member of the Science Advisory Board for Promedior.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Gomer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomer, R.H. New Approaches to Modulating Idiopathic Pulmonary Fibrosis. Curr Allergy Asthma Rep 13, 607–612 (2013). https://doi.org/10.1007/s11882-013-0377-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-013-0377-5

Keywords

Navigation