Skip to main content
Log in

Redox-responsive molecular gels based on camptothecin prodrug with disulfide linkage for controlled and sustained drug release

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

A novel camptothecin (CPT) prodrug was successfully synthesized by conjugating CPT to adamantanecarboxylic acid (AD) via a cleavable disulfide linkage. The resulting CPT-ss-AD prodrug could act as a low molecular weight gelator to form molecular gels in water/water-miscible organic solvent mixture. Meanwhile, biodegradable amphiphilic block copolymer mPEG-b-P (MAC-co-DTC) (PPMD) was also employed as an organic framework together with CPT-ss-AD to form gel structure. CPT-ss-AD/PPMD gel exhibited less compact molecular arrangement but much more stability than CPT-ss-AD gel. The two kinds of gels could effectively release the original CPT under reductive condition at a near-constant rate without any initial burst. As compared to CPT-ss-AD single-component gel, the two-component gel, CPT-ss-AD/PPMD, had a significantly higher release rate of CPT, while 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assays also indicated highly potent cytotoxic activity against HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terech P, Weiss R G. Low molecular mass gelators of organic liquids and the properties of their gels [J]. Chemical Reviews, 1997, 97(8): 3133–3160.

    Article  CAS  PubMed  Google Scholar 

  2. Weiss R G. The past, present, and future of molecular gels. What is the status of the field, and where is it going?[J]. Journal of the American Chemical Society, 2014, 136(21): 7519–7530.

    Article  CAS  PubMed  Google Scholar 

  3. Lü L, Liu H, Chen X, et al. Glutathione-triggered formation of molecular hydrogels for 3D cell culture [J]. Colloids and Surfaces B: Biointerfaces, 2013, 108: 352–357.

    Article  Google Scholar 

  4. Lock L L, Cheetham A G, Zhang P, et al. Design and construction of supramolecular nanobeacons for enzyme detection [J]. ACS nano, 2013, 7(6): 4924–4932.

    Article  CAS  PubMed  Google Scholar 

  5. Babu S S, Praveen V K, Ajayaghosh A. Functional π-gelators and their applications [J]. Chemical Reviews, 2014, 114(4): 1973–2129.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Wang Y, Yang C, et al. Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy [J]. Nanoscale, 2014, 6(23): 14488–14494.

    Article  CAS  PubMed  Google Scholar 

  7. Du X, Zhou J, Shi J, et al. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials [J]. Chemical Reviews, 2015, 115(24): 13165–13307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Branco M C, Pochan D J, Wagner N J, et al. The effect of protein structure on their controlled release from an injectable peptide hydrogel [J]. Biomaterials, 2010, 31(36): 9527–9534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang H, Yang Z. Molecular hydrogels of hydrophobic compounds: A novel self-delivery system for anti-cancer drugs [J]. Soft Matter, 2012, 8(8): 2344–2347.

    Article  CAS  Google Scholar 

  10. Vemula P K, Li J, John G. Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs [J]. Journal of the American Chemical Society, 2006, 128(27): 8932–8938.

    Article  CAS  PubMed  Google Scholar 

  11. Friggeri A, Feringa B L, van Esch J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator [J]. Journal of Controlled Release, 2004, 97(2): 241–248.

    Article  CAS  PubMed  Google Scholar 

  12. Jadhav S R, Chiou B S, Wood D F, et al. Molecular gels-based controlled release devices for pheromones [J]. Soft Matter, 2011, 7(3): 864–867.

    Article  CAS  Google Scholar 

  13. Ma W, Cheetham A G, Cui H. Building nanostructures with drugs [J]. Nano Today, 2016, 11(1): 13–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X M, Li J Y, Gao Y, et al. Molecular nanofibers of olsalazine confer supramolecular hydrogels for reductive release of an anti-inflammatory agent [J]. Journal of the American Chemical Society, 2010, 132(50): 17707–17709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mao L, Wang H, Tan M, et al. Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system [J]. Chemical Communications, 2012, 48(3): 395–397.

    Article  CAS  PubMed  Google Scholar 

  16. Vemula P K, Cruikshank G A, Karp J M, et al. Self-assembled prodrugs: An enzymatically triggered drug-delivery platform[J]. Biomaterials, 2009, 30(3): 383–393.

    Article  CAS  PubMed  Google Scholar 

  17. Webber M J, Matson J B, Tamboli V K, et al. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response [J]. Biomaterials, 2012, 33(28): 6823–6832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cornwell D J, Smith D K. Expanding the scope of gelscombining polymers with low-molecular-weight gelators to yield modified self-assembling smart materials with high-tech applications [J]. Materials Horizons, 2015, 2(3): 279–293.

    Article  CAS  Google Scholar 

  19. Chen L, Revel S, Morris K, et al. Low molecular weight gelator-dextran composites [J]. Chemical Communications, 2010, 46(36): 6738–6740.

    Article  CAS  PubMed  Google Scholar 

  20. Cui J, Shen Z, Wan X. Study on the gel to crystal transition of a novel sugar-appended gelator [J]. Langmuir, 2009, 26(1): 97–103.

    Article  Google Scholar 

  21. Yang C, Bian M, Yang Z. A polymer additive boosts the anti-cancer efficacy of supramolecular nanofibers of taxol [J]. Biomaterials Science, 2014, 2(5): 651–654.

    Article  CAS  Google Scholar 

  22. Wall M E, Wani M C, Cook C E, et al. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate 1, 2 [J]. Journal of the American Chemical Society, 1966, 88(16): 3888–3890.

    Article  CAS  Google Scholar 

  23. Potmesil M. Camptothecins: From bench research to hospital wards [J]. Cancer Research, 1994, 54(6): 1431–1439.

    CAS  PubMed  Google Scholar 

  24. Cheetham A G, Ou Y C, Zhang P, et al. Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles [J]. Chemical Communications, 2014, 50(45): 6039–6042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lü Y, Yang B, Jiang T, et al. Folate-conjugated amphiphilic block copolymers for targeted and efficient delivery of doxorubicin [J]. Colloids and Surfaces B: Biointerfaces, 2014, 115: 253–259.

    Article  Google Scholar 

  26. Ertl B, Platzer P, Wirth M, et al. Poly (D, L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin [J]. Journal of Controlled Release, 1999, 61(3): 305–317.

    Article  CAS  PubMed  Google Scholar 

  27. Cheetham A G, Zhang P, Lin Y, et al. Supramolecular nanostructures formed by anticancer drug assembly [J]. Journal of the American Chemical Society, 2013, 135(8): 2907–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin S Y, Peng M Y, Rong L, et al. Self-defensive nanoassemblies from camptothecin-based antitumor drugs [J]. Regenerative Biomaterials, 2015, 2(3): 159–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang M, Sun S, Yu X, et al. Formation of a large-scale ordered honeycomb pattern by an organogelator via a self-assembly process [J]. Chemical Communications, 2010, 46(20): 3553–3555.

    Article  CAS  PubMed  Google Scholar 

  30. Xu P, Chen D S, Xi J, et al. Short protecting group-free syntheses of camptothecin and 10-hydroxycamptothecin using cascade methodologies [J]. Chemistry–An Asian Journal, 2015, 10(4): 976–981.

    Article  CAS  Google Scholar 

  31. Zou H, Guo W, Yuan W. Supramolecular hydrogels from inclusion complexation of α-cyclodextrin with densely grafted chains in micelles for controlled drug and protein release [J]. Journal of Materials Chemistry B, 2013, 1(45): 6235–6244.

    Article  CAS  Google Scholar 

  32. Shimizu T, Iwaura R, Masuda M, et al. Internucleobaseinteractiondirected self-assembly of nanofibers from homoand heteroditopic 1, ω-nucleobase bolaamphiphiles [J]. Journal of the American Chemical Society, 2001, 123(25): 5947–5955.

    Article  CAS  PubMed  Google Scholar 

  33. Jung J H, John G, Masuda M, et al. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure [J]. Langmuir, 2001, 17(23): 7229–7232.

    Article  CAS  Google Scholar 

  34. Raeburn J, Adams D J. Multicomponent low molecular weight gelators [J]. Chemical Communications, 2015, 51(25): 5170–5180.

    Article  CAS  PubMed  Google Scholar 

  35. Nabiev I, Fleury F, Kudelina I, et al. Spectroscopic and biochemical characterisation of self-aggregates formed by antitumor drugs of the camptothecin family: Their possible role in the unique mode of drug action [J]. Biochemical Pharmacology, 1998, 55(8): 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  36. Song Z, Liu H, Shen J, et al. A molecular hydrogel of a camptothecin derivative [J]. Biomaterials Science, 2013, 1(2): 190–193.

    Article  CAS  Google Scholar 

  37. Ma M, Xing P, Xu S, et al. Reversible pH-responsive helical nanoribbons formed using camptothecin [J]. RSC Advances, 2014, 4(80): 42372–42375.

    Article  CAS  Google Scholar 

  38. Mespouille L, Coulembier O, Kawalec M, et al. Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials [J]. Progress in Polymer Science, 2014, 39(6): 1144–1164.

    Article  CAS  Google Scholar 

  39. Du X, Zhou J, Xu B. Supramolecular hydrogels made of basic biological building blocks [J]. Chemistry–An Asian Journal, 2014, 9(6): 1446–1472.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng He.

Additional information

Foundation item: Supported by the Natural Science Foundation of Hubei Province of China (2014CFB696), the Opening Project of Key Laboratory of Biomedical Polymers of Ministry of Education at Wuhan University (20150102), and the National Natural Science Foundation of China (21074098)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Li, Y., Chen, S. et al. Redox-responsive molecular gels based on camptothecin prodrug with disulfide linkage for controlled and sustained drug release. Wuhan Univ. J. Nat. Sci. 22, 411–419 (2017). https://doi.org/10.1007/s11859-017-1266-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-017-1266-x

Key words

CLC number

Navigation