Skip to main content
Log in

Oxidation Behavior and Chromium Evaporation From Fe and Ni Base Alloys Under SOFC Systems Operation Conditions

  • Advancement in Solid Oxide Fuel Cell Research
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fe and Ni base alloys serve as materials of choice for the fabrication of stack and balance of plant components in solid oxide fuel cell power systems. The oxidation behavior of select Fe and Ni base alloys has been investigated, and chromium evaporation rates have been experimentally measured at 850°C in 3% humidified air exposure conditions. Changes in the oxide morphology and chemistry from the alloys representing chromia former (602CA), alumina former (H214), and mixed chromia and alumina scale formers (AFA25) at 900°C and 1100°C during exposure to humidified air have been studied and are presented. It is found that the rate of Cr evaporation from the alloys decreases in the order of 602CA followed by Haynes 214 and AFA25 at 850°C during exposure to humidified air. Surface and cross-sectional scale morphologies and chemistry have been examined, and variations in the Cr evaporation behavior of different alloys are discussed based on the reaction thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M. Brito, Y. Xiong, and H. Kishimoto, Solid State Ion. 177, 3193 (2006).

    Article  Google Scholar 

  2. K. Hilpert, J. Electrochem. Soc. 143, 3642 (1996).

    Article  Google Scholar 

  3. C. Collins, J. Lucas, T.L. Buchanan, M. Kopczyk, A. Kayani, P.E. Gannon, M.C. Deibert, and R.J. Smith, et al., Surf. Coat. Technol. 201, 4467 (2006).

    Article  Google Scholar 

  4. J.W. Fergus, Int. J. Hydrogen Energy 32, 3664 (2007).

    Article  Google Scholar 

  5. S.P. Jiang and X. Chen, Int. J. Hydrogen Energy 39, 505 (2014).

    Article  MathSciNet  Google Scholar 

  6. J. Huang, F. Xie, C. Wang, and Z. Mao, Int. J. Hydrogen Energy 37, 877 (2012).

    Article  Google Scholar 

  7. T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, M.E. Brito, and H. Yokokawa, J. Electrochem. Soc. 157, B614 (2010).

    Article  Google Scholar 

  8. B. Hu, S. Krishnan, C. Liang, S.J. Heo, A.N. Aphale, R. Ramprasad, and P. Singh, Int. J. Hydrogen Energy 42, 10208 (2017).

    Article  Google Scholar 

  9. S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, and T. Saitoh, J. Power Sour. 55, 73 (1995).

    Article  Google Scholar 

  10. E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, J. Phys. Chem. A 111, 1971 (2007).

    Article  Google Scholar 

  11. Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, and P.V. Hendriksen, Solid State Ion. 180, 1298 (2009).

    Article  Google Scholar 

  12. X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, and L.C. De Jonghe, Solid State Ion. 176, 425 (2005).

    Article  Google Scholar 

  13. P. Singh and N. Birks, Oxid. Met. 12, 23 (1978).

    Article  Google Scholar 

  14. S.R. Akanda, M.E. Walter, N.J. Kidner, and M.M. Seabaugh, Thin Solid Films 565, 237 (2014).

    Article  Google Scholar 

  15. H. 214 Brochure, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/214-brochure.pdf?sfvrsn=10.

  16. V.P. Deodeshmukh and S.K. Srivastava, Superalloys 2008, in 11th International Symposium on Superalloys, p. 689 (2008).

  17. R. Pillai, H. Ackermann, H. Hattendorf, and S. Richter, Corros. Sci. 75, 28 (2013).

    Article  Google Scholar 

  18. A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Druner, and W.J. Quadakkers, Corros. Sci. 127, 27 (2017).

    Article  Google Scholar 

  19. M.P. Brady, Y. Yamamoto, M.L. Santella, and L.R. Walker, Oxid. Met. 72, 311 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from the US DOE (DE-FE-0023385). The University of Connecticut is acknowledged for providing instruments and laboratory facilities for the timely execution of the experimental work. The authors also acknowledge Dr. Lichun Zhang for his assistance in conducting FIB/TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish N. Aphale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aphale, A.N., Hu, B., Reisert, M. et al. Oxidation Behavior and Chromium Evaporation From Fe and Ni Base Alloys Under SOFC Systems Operation Conditions. JOM 71, 116–123 (2019). https://doi.org/10.1007/s11837-018-3188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3188-2

Navigation