Skip to main content

Advertisement

Log in

Review of Recent Advances in Applications of Vapor-Phase Material Infiltration Based on Atomic Layer Deposition

  • Application of Atomic Layer Deposition for Functional Nanomaterials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polymer–inorganic hybrid nanocomposites exhibit enhanced material properties, combining the advantages of both their organic and inorganic subcomponents. Extensive research is being carried out to functionalize polymers towards various improved physicochemical characteristics such as electrical, optical, and mechanical properties for various applications. Vapor-phase material infiltration is an emerging hybridization route, derived from atomic layer deposition, which facilitates uniform incorporation of inorganic entities into a polymer matrix, leading to novel applications in fields such as microelectronics, energy storage, smart coatings, and smart fabrics. In this article, recent advances in employing vapor-phase material infiltration as a hybridization and nanopatterning technique for various application avenues are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. 17

Fig. 3

Adapted from Ref. 20

Fig. 4

Adapted from Ref. 21

Fig. 5

Adapted from Ref. 31

Fig. 6

Adapted from Ref. 36

Fig. 7

Adapted from Ref. 6

Fig. 8

Adapted from Ref. 43

Fig. 9

Adapted from Ref. 53

Fig. 10

Reprinted from Ref. 58

Similar content being viewed by others

References

  1. Y. Zhang, S. Zhuang, X. Xu, and J. Hu, Opt. Mater. 36, 169 (2013).

    Article  Google Scholar 

  2. W.S. Khan, N.N. Hamadneh, and W.A. Khan, Polymer nanocomposites—synthesis techniques, classification and properties, in Science and applications of Tailored Nanostructures, ed. Professor Paolo Di Sia (Cheshire, United Kingdom: One Central Press, 2016), p. 50.

  3. Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, Adv. Mater. 22, 5129 (2010).

    Article  Google Scholar 

  4. L.E. Ocola, D.J. Gosztola, A. Yanguas-Gil, H.-S. Suh, and A. Connolly, Proc. SPIE 9755, 97552C-1 (2016).

    Article  Google Scholar 

  5. H.I. Akyildiz, R.P. Padbury, G.N. Parsons, and J.S. Jur, Langmuir 28, 15697 (2012).

    Article  Google Scholar 

  6. H.I. Akyildiz, M. Lo, E. Dillon, A.T. Roberts, H.O. Everitt, and J.S. Jur, J. Mater. Res. 29, 2817 (2014).

    Article  Google Scholar 

  7. S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C.V. Chandran, T. Bräuniger, G. Hause, and M. Knez, Science 324, 488 (2009).

    Article  Google Scholar 

  8. S.M. Lee, E. Pippel, O. Moutanabbir, I. Gunkel, T. Thurn-Albrecht, and M. Knez, ACS Appl. Mater. Interfaces 2, 2436 (2010).

    Article  Google Scholar 

  9. C.Z. Leng and M.D. Losego, Mater. Horizons 4, 747 (2017).

    Article  Google Scholar 

  10. K. Gregorczyk and M. Knez, Prog. Mater Sci. 75, 1 (2016).

    Article  Google Scholar 

  11. G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, and P.S. Williams, Coord. Chem. Rev. 257, 3323 (2013).

    Article  Google Scholar 

  12. C.T. Black, K.W. Guarini, R. Ruiz, E.M. Sikorski, I.V. Babich, R.L. Sandstrom, and Y. Zhang, IBM J. Res. Dev. 51, 605 (2006).

    Article  Google Scholar 

  13. E. Mills, J. Cannarella, Q. Zhang, S. Bhadra, C.B. Arnold, and S.Y. Chou, J. Vac. Sci. Technol., B 32, 06FG10 (2014).

    Article  Google Scholar 

  14. H.W. Ra, K.S. Choi, J.H. Kim, Y.B. Hahn, and Y.H. Im, Small 4, 1105 (2008).

    Article  Google Scholar 

  15. J. Guan, N. Ferrell, L. James Lee, and D.J. Hansford, Biomaterials 27, 4034 (2006).

    Article  Google Scholar 

  16. Y. Chen, Microelectron. Eng. 135, 57 (2015).

    Article  Google Scholar 

  17. R.A. Segalman, Mater. Sci. Eng. R Rep. 48, 191 (2005).

    Article  Google Scholar 

  18. Q. Peng, Y.C. Tseng, S.B. Darling, and J.W. Elam, ACS Nano 5, 4600 (2011).

    Article  Google Scholar 

  19. J. Kamcev, D.S. Germack, D. Nykypanchuk, R.B. Grubbs, C.Y. Nam, and C.T. Black, ACS Nano 7, 339 (2013).

    Article  Google Scholar 

  20. A. Rahman, P.W. Majewski, G. Doerk, C.T. Black, and K.G. Yager, Nat. Commun. 7, 1 (2016).

    Article  Google Scholar 

  21. Y.-C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling, J. Mater. Chem. 21, 11722 (2011).

    Article  Google Scholar 

  22. Y.-C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling, J. Vac. Sci. Technol., B 29, 06FG01 (2011).

    Article  Google Scholar 

  23. Y.C. Tseng, Q. Peng, L.E. Ocola, J.W. Elam, and S.B. Darling, J. Phys. Chem. C 115, 17725 (2011).

    Article  Google Scholar 

  24. C.-Y. Nam, A. Stein, and K. Kisslinger, J. Vac. Sci. Technol., B 33, 06F201 (2015).

    Article  Google Scholar 

  25. E.C. Dandley, P.C. Lemaire, Z. Zhu, A. Yoon, L. Sheet, and G.N. Parsons, Adv. Mater. Interfaces 4, 1 (2017).

    Article  Google Scholar 

  26. C.-Y. Nam, A. Stein, K. Kisslinger, and C.T. Black, Appl. Phys. Lett. 107, 203106 (2015).

    Article  Google Scholar 

  27. C.Y. Nam and A. Stein, Adv. Opt. Mater. 5, 1700807 (2017).

    Article  Google Scholar 

  28. B. Gong, D.H. Kim, and G.N. Parsons, Langmuir 28, 11906 (2012).

    Article  Google Scholar 

  29. D. Berman, S. Guha, B. Lee, J.W. Elam, S.B. Darling, and E.V. Shevchenko, ACS Nano 11, 2521 (2017).

    Article  Google Scholar 

  30. A. Rahman, M. Liu, and C. T. Black, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 06FE02 (2014).

  31. A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M.D. Eisaman, and C.T. Black, Nat. Commun. 6, 1 (2015).

    Article  Google Scholar 

  32. A.C. Liapis, A. Rahman, and C.T. Black, Appl. Phys. Lett. 111, 183901 (2017).

    Article  Google Scholar 

  33. A. Checco, A. Rahman, and C.T. Black, Adv. Mater. 26, 886 (2014).

    Article  Google Scholar 

  34. A. Checco, B.M. Ocko, A. Rahman, C.T. Black, M. Tasinkevych, A. Giacomello, and S. Dietrich, Phys. Rev. Lett. 112, 216101 (2014).

    Article  Google Scholar 

  35. B. Gong, J.C. Spagnola, and G.N. Parsons, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 30, 01A156 (2012).

  36. S. Greil, A. Rahman, M. Liu, and C.T. Black, Chem. Mater. 29, 9572 (2017).

    Article  Google Scholar 

  37. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, and I.Y. Abdullah, AIP Conf. Proc. 76, 136 (2014).

    Article  Google Scholar 

  38. D. Japić, I. Djerdj, M. Marinšek, and Z.C. Orel, Acta Chim. Slov. 60, 797 (2013).

    Google Scholar 

  39. D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, and D.S. Ginley, Thin Solid Films 496, 26 (2006).

    Article  Google Scholar 

  40. L.E. Ocola, A. Connolly, D.J. Gosztola, R.D. Schaller, and A. Yanguas-Gil, J. Phys. Chem. C 121, 1893 (2017).

    Article  Google Scholar 

  41. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773 (2006).

    Article  Google Scholar 

  42. H.I. Akyildiz, K.L. Stano, A.T. Roberts, H.O. Everitt, and J.S. Jur, Langmuir 32, 4289 (2016).

    Article  Google Scholar 

  43. Y. Yu, Z. Li, Y. Wang, S. Gong, and X. Wang, Adv. Mater. 27, 4938 (2015).

    Article  Google Scholar 

  44. Y. Yu and X. Wang, Extrem. Mech. Lett. 9, 514 (2016).

    Article  Google Scholar 

  45. Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).

    Article  Google Scholar 

  46. S.M. Lee, E. Pippel, O. Moutanabbir, J.H. Kim, H.J. Lee, and M. Knez, ACS Appl. Mater. Interfaces 6, 16827 (2014).

    Article  Google Scholar 

  47. K.E. Gregorczyk, D.F. Pickup, M.G. Sanz, I.A. Irakulis, C. Rogero, and M. Knez, Chem. Mater. 27, 181 (2015).

    Article  Google Scholar 

  48. R.P. Padbury and J.S. Jur, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 33, 01A112 (2015).

  49. Q.P. Unterreithmeier, T. Faust, and J.P. Kotthaus, Phys. Rev. Lett. 105, 1 (2010).

    Article  Google Scholar 

  50. S. Ramesh, S. Khandelwal, K.Y. Rhee, and D. Hui, Compos. Part B Eng. 138, 45 (2018).

    Article  Google Scholar 

  51. P. He, K. Zhao, B. Huang, B. Zhang, Q. Huang, T. Chen, and Q. Zhang, J. Mater. Sci. 53, 4482 (2018).

    Article  Google Scholar 

  52. S. Kim, S. Hyun, J. Lee, K.S. Lee, W. Lee, and J.K. Kim, Adv. Funct. Mater. 28, 1800197 (2018).

    Article  Google Scholar 

  53. K.J. Dusoe, X. Ye, K. Kisslinger, A. Stein, S.W. Lee, and C.Y. Nam, Nano Lett. 17, 7416 (2017).

    Article  Google Scholar 

  54. E. Barry, A.U. Mane, J.A. Libera, J.W. Elam, and S.B. Darling, J. Mater. Chem. A 5, 2929 (2017).

    Article  Google Scholar 

  55. A. Facchetti, Chem. Mater. 23, 733 (2011).

    Article  Google Scholar 

  56. W. Wang, C. Chen, C. Tollan, F. Yang, Y. Qin, and M. Knez, J. Mater. Chem. C 5, 2686 (2017).

    Article  Google Scholar 

  57. S. Obuchovsky, I. Deckman, M. Moshonov, T. Segal Peretz, G. Ankonina, T.J. Savenije, and G.L. Frey, J. Mater. Chem. C 2, 8903 (2014).

    Article  Google Scholar 

  58. M. Moshonov and G.L. Frey, Langmuir 31, 12762 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The research was in part carried out at the Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory (BNL), which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yong Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, A., Tiwale, N. & Nam, CY. Review of Recent Advances in Applications of Vapor-Phase Material Infiltration Based on Atomic Layer Deposition. JOM 71, 185–196 (2019). https://doi.org/10.1007/s11837-018-3141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3141-4

Navigation