Skip to main content

Advertisement

Log in

Bio-Derived Hierarchical 3D Architecture from Seeds for Supercapacitor Application

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The generation and storage of green energy (energy from abundant and nonfossil) is important for a sustainable and clean future. The electrode material in a supercapacitor is a major component. The properties of these materials depend on its inherent architecture and composition. Here, we have chosen sunflower seeds and pumpkin seeds with a completely different structure to obtain a carbonaceous product. The product obtained from sunflower seed carbon is a three-dimensional hierarchical macroporous carbon (SSC) composed of many granular nanocrystals of potassium magnesium phosphate dispersed in a matrix. Contrary to this, carbon from pumpkin seeds (PSC) is revealed to be a more rigid structure, with no porous or ordered morphology. The electrochemical supercapacitive behavior was assessed by cyclic voltammetry and galvanostatic charge–discharge tests. Electrochemical measurements showed that the SSC shows a high specific capacitance of 24.9 Fg−1 as compared with that obtained (2.46 Fg−1) for PSC with a cycling efficiency of 87% and 89%, respectively. On high-temperature cycling for 500 charge–discharge cycles at 0.1 Ag−1, an improved cycling efficiency of 100% and 98% for SSC and PSC, respectively, is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical Supercapacitors; Scientific Fundamentals and Technological Applications (New York: Plenum Press, 1999).

    Google Scholar 

  2. Z.B. Lei, N. Christov, L.L. Zhang, and X.S. Zhao, J. Mater. Chem. 21, 2274 (2011).

    Article  Google Scholar 

  3. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, and G. Yushin, ACS Nano 4, 1337 (2010).

    Article  Google Scholar 

  4. D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.M. Cheng, Angew. Chem. Int. Ed. Engl. 47, 373 (2008).

    Article  Google Scholar 

  5. B.E. Conway, V. Birss, and J. Wojtowicz, J. Power Source 66, 1 (1997).

    Article  Google Scholar 

  6. E. Frackowiak and F. Beguin, Carbon 39, 937 (2001).

    Article  Google Scholar 

  7. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski, Electrochim. Acta 49, 1169 (2004).

    Article  Google Scholar 

  8. E. Raymundo-Pinero, F. Leroux, and F. Beguin, Adv. Mater. 18, 1877 (2006).

    Article  Google Scholar 

  9. J.R. Zhang, D.C. Jiang, B. Chen, J.J. Zhu, L.P. Jiang, and H.Q. Fang, J. Electrochem. Soc. 148, A1362 (2001).

    Article  Google Scholar 

  10. G.H. Yuan, Z.H. Jiang, A. Aramata, and Y.Z. Gao, Carbon 43, 2913 (2005).

    Article  Google Scholar 

  11. T. Morishita, Y. Soneda, T. Tsumura, and M. Inagaki, Carbon 44, 2360 (2006).

    Article  Google Scholar 

  12. A.P.P. Alves, R. Koizumi, A. Samanta, L.D. Machado, A.K. Singh, D.S. Galvao, G.G. Silva, C.S. Tiwary, and P.M. Ajayan, Nano Energy 31, 225 (2017).

    Article  Google Scholar 

  13. S.P. Jose, C.S. Tiwary, S. Kosolwattana, P. Raghavan, L.D. Machado, C. Gautam, T. Prasankumar, J. Joyner, S. Ozden, D.S. Galvao, and P.M. Ajayan, RSC Adv. 6, 93384 (2016).

    Article  Google Scholar 

  14. S. Vinod, C.S. Tiwary, L.D. Machado, S. Ozden, R. Vajtai, D.S. Galvao, and P.M. Ajayan, Nanoscale 8, 15857 (2016).

    Article  Google Scholar 

  15. T.W. Ebbesen and P.M. Ajayan, Nature 358, 220 (1992).

    Article  Google Scholar 

  16. G.N. Churilov, Instrum. Exp. Tech. 43, 1 (2000).

    Article  Google Scholar 

  17. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J. Ahn, P. Kim, J. Choi, and B.H. Hong, Nature 457, 706 (2009).

    Article  Google Scholar 

  18. E.R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, Prog. Energy Combust. Sci. 38, 302 (2012).

    Article  Google Scholar 

  19. M.S. Balathanigaimani, W.G. Shim, M.J. Lee, C. Kim, J.W. Lee, and H. Moon, Electrochem. Commun. 10, 868 (2008).

    Article  Google Scholar 

  20. S.G. Lee, K.H. Park, W.G. Shim, and M.S. Balathanigaimani, J. Ind. Eng. Chem. 17, 450 (2011).

    Article  Google Scholar 

  21. X. Li, W. Xing, S.P. Zhuo, J. Zhou, F. Li, S.Z. Qiao, and G.Q. Lu, Bioresour. Technol. 102, 1118 (2011).

    Article  Google Scholar 

  22. Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, and D. Mitlin, Adv. Energy Mater. 2, 431 (2012).

    Article  Google Scholar 

  23. B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, and Y.S. Huh, ACS Nano 6, 4020 (2012).

    Article  Google Scholar 

  24. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, and T.J. Bandosz, Adv. Funct. Mater. 19, 438 (2009).

    Article  Google Scholar 

  25. L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, and S.H. Yu, ACS Nano 6, 7092 (2012).

    Article  Google Scholar 

  26. D. Hulicova-Jurcakova, A.M. Puziy, O.I. Poddubnaya, F. Súarez-García, J.M.D. Tarascon, and G.Q. Lu, J. Am. Chem. Soc. 131, 5026 (2009).

    Article  Google Scholar 

  27. M. Zhong, E.K. Kim, J.P. McGann, S.E. Chun, J.F. Whitacre, M. Jaroniec, K. Matyjaszewski, and T. Kowalewski, J. Am. Chem. Soc. 134, 14846 (2012).

    Article  Google Scholar 

  28. Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, and D. Mitlin, Energy Environ. Sci. 6, 871 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Pratthana Intawin would like to thank Chiang Mai University and the Royal Golden Jubilee Ph.D. Program for financial support. C.S.T. and P.M.A. acknowledge the funding from the U.S. Department of Defense: U.S. Air Force Office of Scientific Research for the Project MURI: “Synthesis and Characterization of 3-D Carbon Nanotube Solid Networks” Award No. FA9550-12-1-0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farheen N. Sayed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intawin, P., Sayed, F.N., Pengpat, K. et al. Bio-Derived Hierarchical 3D Architecture from Seeds for Supercapacitor Application. JOM 69, 1513–1518 (2017). https://doi.org/10.1007/s11837-017-2406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2406-7

Navigation