Skip to main content
Log in

Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

  • Published:
JOM Aims and scope Submit manuscript

Abstract

During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, H. Nguyen Thi, C.-A. Gandin, D.J. Browne, and W.U. Mirihanage, JOP Conference Series 327 (2011).

  2. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, D.R. Liu, H. Nguyen Thi, N. Bergeon, C.-A .Gandin, D.J. Browne, Ch Beckermann, D. Tourret, and A. Karma, Mater. Sci. Forum 790, 12 (2014).

    Article  Google Scholar 

  3. D.R. Liu, N. Mangelinck-Noël, C.A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, and B. Billia, Acta Mater. 64, 253 (2014).

    Article  Google Scholar 

  4. W.U. Mirihanage, D.J. Browne, G. Zimmermann, and L. Sturz, Acta Mater. 60, 6362 (2012).

    Article  Google Scholar 

  5. Y.Z. Li, N. Mangelinck-Noël, H. Nguyen-Thi, G. Zimmermann, L. Sturz, T. Cool, E.B. Gulsoy, and P.W. Voorhees, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017).

  6. C.A. Gandin, Acta Mater. 48, 2483 (2000).

    Article  Google Scholar 

  7. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984).

    Article  Google Scholar 

  8. D.J. Browne and J.D. Hunt, Numer. Heat Trans. B 45, 395 (2004).

    Article  Google Scholar 

  9. W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009).

    Article  Google Scholar 

  10. W.U. Mirihanage, D.J. Browne, L. Sturz, and G. Zimmermann, IOP Conf. Ser. Mater. Sci. Eng. 27 (2011).

  11. R.P. Mooney, S. McFadden, M. Rebow, and D.J. Browne, Trans. Indian Inst. Met. 65, 527 (2012).

    Article  Google Scholar 

  12. R.P. Mooney, S. McFadden, Z. Gabalcová, and J. Lapin, Appl. Therm. Eng. 67, 61 (2014).

    Article  Google Scholar 

  13. W.A. Johnson and R.F. Mehl, Trans. Aime 135, 396 (1939).

    Google Scholar 

  14. M. Avrami, J. Chem. Phys. 9, 177 (1941).

    Article  Google Scholar 

  15. A.N. Kolmogorov, Bull. Acad. Sci. URSS (Sci. Math. Nat.) 3, 355 (1937).

    Google Scholar 

  16. T. Carozzani, H. Digonnet, and C.-A. Gandin, Model. Simul. Mater. Sci. Eng. 20, 015010 (2012).

    Article  Google Scholar 

  17. T. Carozzani, Ch.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle, Metall. Mater. Trans. A 44, 873 (2013).

    Article  Google Scholar 

  18. T. Carozzani, Ch.-A. Gandin, and H. Digonnet, Model. Simul. Mater. Sci. Eng. 22, 015012 (2014).

    Article  Google Scholar 

  19. Ch.-A. Gandin, T. Carozzani, H. Digonnet, S. Chen, and G. Guillemot, JOM 65, 1122 (2013).

    Article  Google Scholar 

  20. D.R. Liu, N. Mangelinck-Noël, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Acta Mater. 93, 24 (2015).

    Article  Google Scholar 

  21. D.R. Liu, N. Mangelinck-Noël, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, B. Billia, and I.O.P. Series, Mater. Sci. Eng. 117, 012009 (2016).

    Google Scholar 

  22. D. Tourret, A. Karma, A.J. Clarke, P.J. Gibbs, and S.D. Imhoff, IOP Conf. Ser. Mater. Sci. Eng. 84, 012082 (2015).

    Article  Google Scholar 

  23. D. Tourret and A. Karma, Acta Mater. 120, 240 (2016).

    Article  Google Scholar 

  24. D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, and A. Karma, JOM 67, 1776 (2015).

    Article  Google Scholar 

  25. J.L. Fife and P.W. Voorhees, Acta Mater. 57, 2418 (2009).

    Article  Google Scholar 

  26. J. Alkemper and P.W. Voorhees, Acta Mater. 49, 897 (2001).

    Article  Google Scholar 

  27. L. Sturz, M. Hamacher, and G. Zimmermann, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017).

  28. A. Ludwig, J. Mogerisch, M. Kolbe, G. Zimmermann, L. Sturz, N. Bergeon, B. Billia, G. Faivre, S. Akamatsu, S. Bottin-Rousseau, and D. Voss, JOM 64, 1097 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out as part of the CETSOL European Space Agency microgravity application program (ESTEC Contract Number 14313/01/NL/SH). The authors would like to acknowledge funding by the German BMWi/DLR (FKZ 50WM1443), and the financial support of the Enterprise Ireland via European Space Agency PRODEX Programme (Contract Number 4000107132). A. Karma and C.-H. Chen acknowledge support of NASA Grant NNX14AB34G. The authors acknowledge Hydro-Aluminium Rolled Products GmbH for providing the alloys for the flight samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, G., Sturz, L., Nguyen-Thi, H. et al. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project. JOM 69, 1269–1279 (2017). https://doi.org/10.1007/s11837-017-2397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2397-4

Navigation