Skip to main content
Log in

In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103–104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Dantzig and M. Rappaz, Solidification, 1st ed. (Lausanne: EPFL Press, 2009).

    Book  MATH  Google Scholar 

  2. P. Li, V.I. Nikitin, E.G. Kandalova, and K.V. Nikitin, Mater. Sci. Eng. A 332, 371 (2002).

    Article  Google Scholar 

  3. P. Ma, K. Prashanth, S. Scudino, Y. Jia, H. Wang, C. Zou, Z. Wei, and J. Eckert, Metals 4, 28 (2014).

    Article  Google Scholar 

  4. R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz, Mater. Trans. 43, 1670 (2002).

    Article  Google Scholar 

  5. Y. Li and D. Gu, Mater. Des. 63, 856 (2014).

    Article  Google Scholar 

  6. A. Hussein, L. Hao, C. Yan, and R. Everson, Mater. Des. 52, 638 (2013).

    Article  Google Scholar 

  7. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe, Acta Mater. 60, 3849 (2012).

    Article  Google Scholar 

  8. R. Chou, J. Milligan, M. Paliwal, and M. Brochu, JOM 67, 590 (2015).

    Article  Google Scholar 

  9. J.L. Fife, M. Rappaz, M. Pistone, T. Celcer, G. Mikuljan, and M. Stampanoni, J. Synchrotron Radiat. 19, 352 (2012).

    Article  Google Scholar 

  10. C. Kenel and C. Leinenbach, J. Alloys Compd. 637, 242 (2015).

    Article  Google Scholar 

  11. W. De Nolf, F. Vanmeert, and K. Janssens, J. Appl. Crystallogr. 47, 1107 (2014).

    Article  Google Scholar 

  12. C. Kenel, D. Grolimund, J.L. Fife, V.A. Samnson, S. Van Petegem, H. Van Swygenhoven, and C. Leinenbach, Scr. Mater. 114, 117 (2016).

    Article  Google Scholar 

  13. Y.-W. Kim, JOM 46, 30 (1994).

    Article  Google Scholar 

  14. H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels, Adv. Eng. Mater. 10, 707 (2008).

    Article  Google Scholar 

  15. P. Bartolotta, J. Barret, T. Kelly, and R. Smashey, JOM 49, 48 (1997).

    Article  Google Scholar 

  16. C. McCullough, J. Valencia, C. Levi, and R. Mehrabian, Acta Metall. 37, 1321 (1989).

    Article  Google Scholar 

  17. J. Liu, P. Staron, S. Riekehr, A. Stark, N. Schell, N. Huber, A. Schreyer, M. Müller, and N. Kashaev, Intermetallics 62, 27 (2015).

    Article  Google Scholar 

  18. T. Sentenac, Y. Le Maoultt, G. Rolland, and M. Devy, IEEE Trans. Instrum. Meas. 52, 46 (2003).

    Article  Google Scholar 

  19. P. Schloth, J.N. Wagner, J.L. Fife, A. Menzel, J.-M. Drezet, and H. Van Swygenhoven, Appl. Phys. Lett. 105, 101908 (2014).

    Article  Google Scholar 

  20. P. Schloth, A. Menzel, J.L. Fife, J.N. Wagner, H. Van Swygenhoven, and J.-M. Drezet, Scr. Mater. 108, 56 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Paul Scherrer Institut for providing beamtime at the cSAXS and microXAS beamlines of the Swiss Light Source. They also thank the TOMCAT beamline at the Swiss Light Source for providing the laser system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leinenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenel, C., Schloth, P., Van Petegem, S. et al. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating. JOM 68, 978–984 (2016). https://doi.org/10.1007/s11837-015-1774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1774-0

Navigation