Skip to main content
Log in

Understanding the Microstructure Formation of Ti-6Al-4V During Direct Laser Deposition via In-Situ Thermal Monitoring

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Understanding the thermal phenomena associated with direct laser deposition (DLD) is an important step toward obtaining ‘process–property–performance’ relationships for various designed parts and materials, as well as achieving increased process control for meeting application constraints. In this study, a thermally monitored laser engineered net shaping (LENS™) system was used with time-invariant (uncontrolled) build parameters to construct Ti-6Al-4V cylinders. During fabrication, the part’s thermal history and melt pool temperature were recorded via an in-chamber infrared camera and a dual-wavelength pyrometer, respectively. These tools demonstrate the use of non-destructive thermographic inspection for ensuring target part quality and/or microstructure. For the chosen part geometry, the melt pool was found to be approximately 40%–50% superheated during DLD, reaching temperatures as high as 2500°C. Temperature gradients varied and peaked around 1000°C/mm along the diameter of the relatively small cylinders. Cooling rates within the melt pool were found to increase as maximum melt pool temperature increased, for instance, from 12,000°C/s to 25,000°C/s. The post-DLD Ti-6Al-4V microstructure was found to vary from columnar near the substrate, or substrate-affected zone, to equiaxed approximately 2–3 mm from the substrate. Bulk heating of the part due to successive layer deposits was shown to promote α″ to an α + β decomposition, while prior-β grains were observed near and far from the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.L. Griffith, D.M. Keicher, C.L. Atwood, J.A. Romero, J.E. Smugeresky, L.D. Harwell, and D.L. Greene, in Proc. 7th Solid Free. Fabr. Symp. (1995), pp. 125–132.

  2. J.E. Smugeresky, D.M. Keicher, J.A. Romero, M.L. Griffith, and L.D. Harwell, in World Congr. Powder Met. Part. Mater. (Chicago, IL, 1997).

  3. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, M. Essien, J. Brooks, C.V. Robino, J.E. Smugeresky, W.H. Hofmeister, M.J. Wert, and D.V. Nelson, Mater. Des. 20, 107 (1999).

    Article  Google Scholar 

  4. M.L. Griffith, M.T. Ensz, J.D. Puskar, C.V Robino, J.A. Brooks, J.Philliber, J.E. Smugeresky, and W.H. Hofmeister, in Mater. Res. Soc. Proc. (2000).

  5. F.P. Jeantette, D.M. Keicher, J.A. Romero, and L.P. Schanwald, Patent #: US006046426A (2000).

  6. U. Articek, M. Milfelner, and I. Anzel, Adv. Prod. Eng. Manag. 8, 169 (2013).

    Google Scholar 

  7. F. Wang, J. Mei, and X. Wu, J. Mater. Process. Technol. 195, 321 (2008).

    Article  Google Scholar 

  8. W. Liu and J.N. DuPont, Scr. Mater. 48, 1337 (2003).

    Article  Google Scholar 

  9. A. Bandyopadhyay, B.V. Krishna, W. Xue, and S. Bose, J. Mater. Sci. Mater. Med. 20, S29 (2009).

    Article  Google Scholar 

  10. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).

    Article  Google Scholar 

  11. A.R. Nassar, J.S. Keist, E.W. Reutzel, and T.J. Spurgeon, Addit. Manuf. 6, 39 (2015).

    Article  Google Scholar 

  12. L. Tang and R.G. Landers, ASME J. Manuf. Sci. Eng. 132, 011011 (2010).

    Article  Google Scholar 

  13. L. Wang, S.D. Felicelli, and J.E. Craig, in Proc. 12th Solid Free. Fabr. Symp. (2007), pp. 100–111.

  14. S.M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, Addit. Manuf. 8, 36 (2015).

    Article  Google Scholar 

  15. V. Neela and A. De, Int. J. Adv. Manuf. Technol. 45, 935 (2009).

    Article  Google Scholar 

  16. L. Wang and S. Felicelli, Mater. Sci. Eng. A 435–436, 625 (2006).

    Article  Google Scholar 

  17. G.J. Marshall, W.J. Young II, N. Shamsaei, J.Craig, T. Wakeman, and S.M. Thompson, in Proc. 26th Solid Free. Fabr. Symp. (Austin, USA, 2015).

  18. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, E. Smugeresky, M. Essien, J. Brooks, C.V Robino, and D.V Nelson, in Proc. 9th Solid Free. Fabr. Symp. Austin, USA (1998), pp. 89–96.

  19. R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia, Mater. Sci. Eng. A 428, 47 (2006).

    Article  Google Scholar 

  20. M. Gaumann, C. Bezencon, P. Canalis, and W. Kurz, Acta Mater. 49, 1051 (2001).

    Article  Google Scholar 

  21. W. Hofmeister, M. Wert, J.E. Smugeresky, J.A. Philliber, and M.L. Griffith, JOM 51, 6 (1999).

    Google Scholar 

  22. L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and M.F. Horstemeyer, Mater. Sci. Eng. A 474, 148 (2008).

    Article  Google Scholar 

  23. J.E. Craig, T. Wakeman, R. Grylls, and J. Bullen, Sensors, Sampling, and Simulation for Process Control, ed. B.G. Thomas, J.A. Yurko, and L. Zhang (Hoboken, NJ: John Wiley & Sons, Inc., 2011), chap. 12. doi:10.1002/9781118061800.ch12.

  24. G. Bi, A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe, Surf. Coatings Technol. 201, 2676 (2006).

    Article  Google Scholar 

  25. S. Ocylok, E. Alexeev, S. Mann, A. Weisheit, K. Wissenbach, and I. Kelbassa, Phys. Procedia 56, 228 (2014).

    Article  Google Scholar 

  26. S. Liu, P. Farahmand, and R. Kovacevic, Opt. Laser Technol. 64, 363 (2014).

    Article  Google Scholar 

  27. G. Bi, A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe, Appl. Surf. Sci. 253, 1411 (2006).

    Article  Google Scholar 

  28. G. Bi, A. Gasser, K. Wissenbach, A. Drenker, and R. Poprawe, Opt. Lasers Eng. 44, 1348 (2006).

    Article  Google Scholar 

  29. J. Yang, S. Sun, M. Brandt, and W. Yan, J. Mater. Process. Technol. 210, 2215 (2010).

    Article  Google Scholar 

  30. R.A. Wood and R.J. Favor, Titanium Alloys Handbook (Air Force Materials Laboratory, Wright-Patterson Air Force Base, Department of Defense Information Analysis Center, Ohio, 1972).

  31. M. Labudovic and R. Kovacevic, in Inst. Mech. Eng. (2000), pp. 315–340.

  32. M. Boivineau, Int. J. Thermophys. 27, 507 (2006).

    Article  Google Scholar 

  33. M. Doubenskaia, M. Pavlov, S. Grigoriev, and I. Smurov, Surf. Coatings Technol. 220, 244 (2013).

    Article  Google Scholar 

  34. E. Rodriguez, J. Mireles, C.A. Terrazas, D. Espalin, M.A. Perez, and R.B. Wicker, Addit. Manuf. 5, 31 (2015).

    Article  Google Scholar 

  35. T. Purtonen, A. Kalliosaari, and A. Salminen, Phys. Procedia 56, 1218 (2014).

    Article  Google Scholar 

  36. P. Hagqvist, F. Sikström, and A.K. Christiansson, Meas. J. Int. Meas. Confed. 46, 871 (2013).

    Article  Google Scholar 

  37. L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67, 629 (2015).

    Article  Google Scholar 

  38. B. Torries, A. Sterling, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, J. Rapid Prototyp. 22, Special Issue of 2015 SFF Symposium (2016).

  39. A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, in 26th Solid Free. Fabr. Symp. (Austin, TX, 2015).

  40. M. Yan and P. Yu, in Sinter. Tech. Mater., edited by A. Lakshmanan (INTECH, 2015), pp. 77–106.

  41. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, J. Alloys Compd. 632, 505 (2015).

    Article  Google Scholar 

  42. P.A. Kobryn and S.L. Semiatin, J. Mater. Process. Technol. 135 (2–3), 330 (2003). doi:10.1016/S0924-0136(02)00865-8.

  43. P.A. Kobryn, E.H. Moore, and S.L. Semiatin, Scr. Mater. 43, 299 (2000).

    Article  Google Scholar 

  44. A. Bagheri, S. M. Thompson, and N. Shamsaei, in ASME Int. Mech. Eng. Congr. Expo. (Houston, TX, 2015).

  45. A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A (2016). doi:10.1016/j.msea.2015.12.026.

  46. S.A. Miller, P.R. Roberts, and A.S.M. Handbook, Powder Met. Technol. Appl. 7, 97 (1990).

    Google Scholar 

  47. A. Sterling, N. Shamsaei, B. Torries, and S.M. Thompson, in 6th Int. Conf. Fatigue Des. (Senlis, France, 2015).

  48. S.R. Daniewicz, Fatigue Fract. Eng. Mater. Struct. 22 (4), 273 (1999). doi:10.1046/j.1460-2695.1999.00164.x.

  49. B. Taylor and E. Weidmann, Application Notes—Metallagraphic Preparation of Titanium (Denmark: Struers, 2015). http://www.struers.com/default.asp?top_id=5&main_id=24&sub_id=185&doc_id=855.

  50. Matweb: Material Property Data, TIMET 6-4 Titanium Alloy (Ti-6Al-4V; ASTM Grade 5) Rod (2015). http://www.matweb.com/search/DataSheet.aspx?MatGUID=f0d81a62a0564398b1b17e851841e0c4&ckck=1. Accessed Dec 2015.

  51. D.P. Kennedy, J. Appl. Phys. 31, 1490 (1960).

    Article  Google Scholar 

  52. J. Gockel and J. Beuth, in Solid Free. Fabr. Symp. (Austin, TX, 2013), pp. 666–674.

  53. J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, in Titan. Alloy.Adv. Prop. Control, edited by J. Sieniawski and W. Ziaja (INTECH, 2013), pp. 70–80.

Download references

Acknowledgements

The research presented here, including all fabrication and experimentation, was conducted at Mississippi State University’s Center for Advanced Vehicular Systems (CAVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshall, G.J., Young, W.J., Thompson, S.M. et al. Understanding the Microstructure Formation of Ti-6Al-4V During Direct Laser Deposition via In-Situ Thermal Monitoring. JOM 68, 778–790 (2016). https://doi.org/10.1007/s11837-015-1767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1767-z

Navigation