Skip to main content
Log in

Effect of Annealing on Microstructure and Tensile Properties of 5052/AZ31/5052 Clad Sheets

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Three-layered 5052Al/AZ31Mg/5052Al (5052/AZ31/5052) clad sheets were fabricated by four-pass rolling and annealed under different conditions. Under the optimal annealing condition, homogeneous and equiaxial grains with an average AZ31 grain size of 5.24 µm were obtained and the maximum values of ultimate tensile strength and elongation of the clad sheet reached 230 MPa and 18%, respectively. Electron backscatter diffraction analysis showed that the AZ31 layer had a typical rolling texture with its c-axis parallel to the normal direction. The fraction of low-angle grain boundaries in the 5052 layer was nearly four times more than that in the AZ31 layer because of different deformation extent and recrystallization driving forces. The textures of Al3Mg2 and Mg17Al12 were similar to that of 5052 because of the deformation coordination during the rolling and recrystallization process. The orientation relationship between Mg17Al12 and AZ31 seemed to be (110) Mg17Al12//(10−11) AZ31.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.L. Mordike and T. Eber, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  2. W. Tang, S. Huang, S. Zhang, D. Li, and Y. Peng, Mater. Process. Technol. 211, 1203 (2011).

    Article  Google Scholar 

  3. A. Zomorodian, M.P. Garcia, T. Moura e Silva, J.C.S. Fernandes, M.H. Fernandes, and M.F. Montemor, Acta Biomater. 9, 8660 (2013).

    Article  Google Scholar 

  4. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and M. Haghshenas, J. Alloys Comp. 475, 126 (2009).

    Article  Google Scholar 

  5. S. Gudić, I. Smoljko, and M. Kliškić, J. Alloys Comp. 505, 54 (2010).

    Article  Google Scholar 

  6. M. van Soestbergen, A. Mavinkurve, R.T.H. Rongen, K.M.B. Jansen, L.J. Ernst, and G.Q. Zhang, Electrochim. Acta 55, 5459 (2010).

    Article  Google Scholar 

  7. X. Li, W. L, X. Zhao, Y. Zhang, X. Fu, and F. Liu, J. Alloys Compd. 471, 408 (2009).

    Article  Google Scholar 

  8. Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Mater. Sci. Eng. A 527, 2241 (2010).

    Article  Google Scholar 

  9. F. Banglong, G. Qin, F. Li, X. Meng, J. Zhang, and W. Chuansong, J. Mater. Process. Technol. 218, 38 (2015).

    Article  Google Scholar 

  10. H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier, Scr. Mater. 61, 717 (2009).

    Article  Google Scholar 

  11. M.C. Chen, H.C. Hsieh, and W. Weite, J. Alloys Comp. 416, 169 (2006).

    Article  Google Scholar 

  12. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Mater. Sci. Eng. A 527, 3073 (2010).

    Article  Google Scholar 

  13. H. Matsumoto, S. Watanabe, and S. Hanada, J. Mater. Process. Technol. 169, 9 (2005).

    Article  Google Scholar 

  14. C. Luo, W. Liang, Z. Chen, J. Zhang, C. Chi, and F. Yang, Mater. Charact. 84, 34 (2013).

    Article  Google Scholar 

  15. X.P. Zhang, T.H. Yang, S. Castagne, and J.T. Wang, Mater. Sci. Eng. A 528, 1954 (2011).

    Article  Google Scholar 

  16. U.F.H. Suhuddin, V. Fischer, and J.F. dos Santos, Scr. Mater. 68, 87 (2013).

    Article  Google Scholar 

  17. Y.S. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa, Scr. Mater. 50, 1233 (2004).

    Article  Google Scholar 

  18. C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, and R.P. Liun, Mater. Sci. Eng. A 558, 510 (2012).

    Article  Google Scholar 

  19. A. Zolriasatein and A. Shokuhfar, Mater. Des. 75, 17 (2015).

    Article  Google Scholar 

  20. J.C. Tan and M.J. Tan, Sci. Eng. A 339, 124 (2003).

    Article  Google Scholar 

  21. Q. Jin, S.-Y. Shim, and S.-G. Lim, Scr. Mater. 55, 843 (2006).

    Article  Google Scholar 

  22. F. Guo, D. Zhang, X. Yang, L. Jiang, S. Chai, and F. Pan, Mater. Sci. Eng. A 619, 66 (2014).

    Article  Google Scholar 

  23. S.E. Ion, F.J. Humphreys, and S.H. White, Acta Mater. 30, 1909 (1982).

    Article  Google Scholar 

  24. Q. Jining, Z. Di, Z. Guoding, and J.-C. Lee, Mater. Sci. Eng. A 408, 79 (2005).

    Article  Google Scholar 

  25. H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier, Scr. Mater. 61, 717 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grant Numbers 51175363 and 51274149; the Shanxi Scholarship Council of China (Number 2014-029); The Youth Science Foundation of Shanxi Province under Grant Number 2008021033; and the Fund for the Doctoral Program of Higher Education of China under Grant Number 20111402110004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Liang, W., Chi, C. et al. Effect of Annealing on Microstructure and Tensile Properties of 5052/AZ31/5052 Clad Sheets. JOM 68, 1282–1292 (2016). https://doi.org/10.1007/s11837-015-1755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1755-3

Keywords

Navigation