Skip to main content
Log in

Temperature Dependence of the Anisotropy and Creep in a Single-Crystal Nickel Superalloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The thermomechanical response of the second-generation single-crystal nickel superalloy (SC180) was obtained for wide range of temperatures (25–1000°C). Uniaxial tension and stress relaxation experiments were performed to study the influence of [100] and [110] crystallographic orientation on stress anisotropy and creep responses. Experiments were conducted using micromechanical testing systems and strains were measured using two-dimensional digital image correlation technique. Results were reported on coefficient of thermal expansion, Young’s modulus (E), yield strength, work hardening (n), and activation energies (Q). The stress relaxation experiments were used to calculate activation energy in [100] and [110] crystallographic directions and found to be 300 kJ/mol and 350 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.M. Pollock, S. Tin, and J. Propuls, Power 22, 361 (2006).

    Google Scholar 

  2. A. Wagner, B.A. Shollock, and M. McLean, Mater. Sci. Eng. A 374, 270 (2004).

    Article  Google Scholar 

  3. X. Zhao, L. Liu, Z. Yu, W. Zhang, and H. Fu, Mater. Char. 61, 7 (2010).

    Article  Google Scholar 

  4. V.N. Toloraya, E.N. Kablov, and I.L. Svetlov, Met. Sci. Heat Treat. 48, 352 (2006).

    Article  Google Scholar 

  5. K. Fisher and W. Kurz, Fundamentals of Solidification, 4th rev. ed. (Zurich, Switzerland: Trans Tech Publications, 1986).

  6. C.A. Gandin, M. Rappaz, D. West, and B.L. Adams, Metall. Mater. Trans. A 26, 1543 (1995).

    Article  Google Scholar 

  7. D. Ma and U. Grafe, Mater. Sci. Eng. A 270, 339 (1999).

    Article  Google Scholar 

  8. K. Kakehi, Metall. Mater. Trans. A 31, 421 (2000).

    Article  Google Scholar 

  9. L.N. Wang, Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Mater. Sci. Eng. A 505, 144 (2009).

    Article  Google Scholar 

  10. R.P. Dalal, C.R. Thomas, and L.E. Dardi (Paper presented at the Proceedings of the 6th International Symposium on Superalloys, Champion, PA, 1984), p. 185.

  11. R.J. Thompson (Ph.D. dissertation, Johns Hopkins University, 2008).

  12. A.A. Hopgood and J.W. Martin, Mater. Sci. Eng. 82, 27 (1986).

    Article  Google Scholar 

  13. G.R. Leverant and B.H. Kear, Metall. Mater. Trans. B 1, 491 (1970).

    Article  Google Scholar 

  14. M. Feller-Kniepmeier and T. Kuttner, Acta Metall. 42, 3167 (1994).

    Article  Google Scholar 

  15. T. Link and M. Feller-Kniepmeier, Metall. Trans. A 23, 99 (1992).

    Article  Google Scholar 

  16. A. Staroselsky and B.N. Cassenti, Int. J. Solids Struct. 48, 2060 (2011).

    Article  Google Scholar 

  17. S. Keshavarz and S. Ghosh, Acta Mater. 6, 6549 (2013).

    Article  Google Scholar 

  18. A. Vattré, B. Devincre, and A. Roos, Acta Mater. 58, 1938 (2010).

    Article  Google Scholar 

  19. H.C. Basoalto, J.W. Brooks, and I. Di Martino, Mater. Sci. Technol. 25, 221 (2009).

    Article  Google Scholar 

  20. M. Huang, L. Zhao, and J. Tong, Int. J. Plast. 28, 141 (2012).

    Article  Google Scholar 

  21. M.M. Shenoy (Ph.D. dissertation, Georgia Institute of Technology, 2006).

  22. A. Pandey, V.K. Tolpygo, and K.J. Hemker, JOM 65, 542 (2013).

    Article  Google Scholar 

  23. M.J. Donachie and S.J. Donachie, Superalloys, A Technical Guide, 2nd ed. (Materials Park, OH: ASM International, 2001).

    Google Scholar 

  24. D.T. Butler (Ph.D. dissertation, Johns Hopkins University, 2009).

  25. A. Pandey, A. Shyam, Z. Liu, and R. Goettler, J. Power Source 273, 522 (2015).

    Article  Google Scholar 

  26. J.S. Jones (Ph.D. dissertation, Johns Hopkins University, 2009).

  27. A. Pandey, A. Shyam, T.R. Watkins, E. Lara-Curzio, R.J. Stafford, and K.J. Hemker, J. Am. Ceram. Soc. 97, 899 (2014).

    Article  Google Scholar 

  28. L.R. Morris and W.C. Winegard, J. Cryst. Growth 5, 361 (1969).

    Article  Google Scholar 

  29. S. Tian, X. Ding, Z. Guo, J. Xie, Y. Xue, and D. Shu, Mater. Sci. Eng. A 594, 7 (2014).

    Article  Google Scholar 

  30. D.M. Knowles and Q.Z. Chen, Mater. Sci. Eng. A 356, 352 (2003).

    Article  Google Scholar 

  31. V. Sass, U. Glatzel, and M. Feller-Kniepmeier, Acta Mater. 44, 1967 (1996).

    Article  Google Scholar 

  32. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker, Acta Mater. 51, 2205 (2003).

    Article  Google Scholar 

  33. J. Svoboda and P. Lukas, Mater. Sci. Eng. A 234, 173 (1997).

    Article  Google Scholar 

  34. W.W. Milligan and S.D. Antolovich, Metall. Trans. A 18, 851987 (1995).

    Google Scholar 

  35. J.R. Li, Z.G. Zhong, D.Z. Tang, S.Z. Liu, P. Wei, P.Y. Wei, Z.T. Wu, D. Huang, and M. Han, Superalloys 2000, eds. T.M. Pollock, R.D. Kissinger, P.R. Bowman, K.A. Green, M. McLean, S. Olsen, and J.J. Schirra (Warrendale, PA: TMS, 2000), pp. 777–783.

Download references

Acknowledgements

The authors are grateful to V.K. Tolpygo of Honeywell Corporation for providing funding and samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Hemker, K.J. Temperature Dependence of the Anisotropy and Creep in a Single-Crystal Nickel Superalloy. JOM 67, 1617–1623 (2015). https://doi.org/10.1007/s11837-015-1414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1414-8

Keywords

Navigation