Skip to main content

Advertisement

Log in

Scalable Fabrication of Metal Oxide Functional Materials and Their Applications in High-Temperature Optical Sensing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We report a scalable manufacturing approach to produce nano-porous metal oxide films and the dopant variants using a block-copolymer template combined with a sol–gel solution processing approach. The refractive index of the film can be tailored to 1.2–2.4 by 3D nanostructuring in the sub-wavelength regime at scales of 20 nm or less. Based on this approach, this paper reports the synthesis of nanoporous palladium (Pd)-doped titanium dioxide (TiO2) film with refractive index matching the optical fiber material, and its importance on D-shaped fiber Bragg grating for hydrogen sensing at extremely high temperature up to 700°C. The sensor is based on evanescent field interaction in hydrogen-sensitive cladding. The flat side of D-shaped fiber grating was etched to remove a residual 4 μm cladding material, and thermally stabilized for high-temperature requirements. The peak intensity change of the fiber Bragg wavelength was observed with different hydrogen concentrations from 0.25 vol.% H2/N2 to 5 vol.% H2/N2. The experimental result shows that the sensor’s hydrogen response is reversible and fast. The response time of the hydrogen sensor is <8 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.B. Pendry, D. Schurig, and D.R. Smith, Science 312, 1780 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  2. Q. Wu, J.P. Turpin, and D.H. Werner, Light Sci. Appl. 1, e38 (2012).

    Article  Google Scholar 

  3. N. Yamazoe, Sens. Actuators B 108, 2 (2005).

    Article  Google Scholar 

  4. Z. Gu, Y. Xu, and K. Gao, Opt. Lett. 31, 2405 (2006).

    Article  Google Scholar 

  5. I.D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, and H.L. Tuller, Nano Lett. 6, 2009 (2006).

    Article  Google Scholar 

  6. N. Yamazoe, Sens. Actuators B 5, 7 (1991).

    Article  Google Scholar 

  7. A. Rothschild and Y. Komem, J. Appl. Phys. 95, 6374 (2004).

    Article  Google Scholar 

  8. Z. Poole, P. Ohodnicki, R. Chen, Y. Lin, and K. Chen, Opt. Express 22, 2665 (2014).

    Article  Google Scholar 

  9. M.C. Orilall and U. Wiesner, Chem. Soc. Rev. 40, 520 (2011).

    Article  Google Scholar 

  10. S. Shao, M. Dimitrov, N. Guana, and R. Kohn, Nanoscale 2, 2054 (2010).

    Article  Google Scholar 

  11. B.E. Yoldas and D.P. Partlow, Thin Solid Films 129, 1 (1985).

    Article  Google Scholar 

  12. M. Zhang, Z. Yuan, J. Song, and C. Zheng, Sens. Actuators B 148, 87 (2010).

    Article  Google Scholar 

  13. J. Moon, J.A. Park, S.J. Lee, T. Zyung, and I.D. Kim, Sens. Actuators B 149, 301 (2010).

    Article  Google Scholar 

  14. A. Kolmakov and M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004).

    Article  Google Scholar 

  15. B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, and G.W. Yang, J. Phys. Chem. C 112, 6643 (2008).

    Article  Google Scholar 

  16. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, and J. Lin, Appl. Phys. Lett. 86, 243503 (2005).

    Article  Google Scholar 

  17. H.F. Lu, F. Li, G. Liu, Z.G. Chen, D.W. Wang, H.T. Fang, G.Q. Lu, Z.H. Jiang, and H.M. Cheng, Nanotechnology 19, 405504 (2008).

    Article  Google Scholar 

  18. A.S. Zuruzi, A. Kolmakov, N.C. MacDonald, and M. Moskovits, Appl. Phys. Lett. 88, 102904 (2006).

    Article  Google Scholar 

  19. H. Liu, D. Ding, C. Ning, and Z. Li, Nanotechnology 23, 015502 (2012).

    Article  Google Scholar 

  20. M. Buric, K.P. Chen, M. Bhattarai, P.R. Swinehart, and M. Maklad, IEEE Photonics Technol. Lett. 19, 255 (2007).

    Article  Google Scholar 

  21. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, Meas. Sci. Technol. 13, 118 (2002).

    Article  Google Scholar 

  22. J. Villatoro, D.L. Moreno, and D.M. Hernández, Sens. Actuators B 110, 23 (2005).

    Article  Google Scholar 

  23. F.A. Muhammad and G. Stewart, Electron. Lett. 28, 1205 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CMMI-1300273, CMMI-1348591) and the Department of Energy (DE-FE0003859). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, A., Poole, Z.L., Chen, R. et al. Scalable Fabrication of Metal Oxide Functional Materials and Their Applications in High-Temperature Optical Sensing. JOM 67, 53–58 (2015). https://doi.org/10.1007/s11837-014-1235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1235-1

Keywords

Navigation