Skip to main content
Log in

Interfacially Driven Deformation Twinning in Bulk Ag-Cu Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interfaces and interface/defect interactions increasingly dominate the mechanical response of materials as the dimensions of the grains decrease to the nanoscale. Recently, we reported unusually profuse deformation twinning in Ag-Cu layered eutectic composites with bilayer thicknesses in the submicron regime (~200 nm–400 nm) at room temperature and low strain rates. Using atomistic simulations and dislocation theory, we propose that the Ag-Cu interface facilitated deformation twinning in Cu by permitting the transmission of twinning partials from Ag to Cu. In this way, twins in Ag can provide an ample supply of twinning partials to Cu to support and sustain twin growth in Cu during deformation. Interface-driven twinning as revealed by this study suggests the exciting possibility of altering the roles of dislocation slip and twinning through the design of heterophase interface structure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.J. Demkowicz, P. Bellon, and B.D. Wirth, MRS Bull. 35, 992 (2010).

    Article  Google Scholar 

  2. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 136102 (2008).

    Article  Google Scholar 

  3. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra, Acta Mater. 59, 3804 (2011).

    Article  Google Scholar 

  4. J.S. Carpenter, X. Liu, A. Darbal, N.T. Nuhfer, R.J. McCabe, S.C. Vogel, J.E. Ledonne, A.D. Rollett, K. Barmak, I.J. Beyerlein, and N.A. Mara, Scr. Mater. 67, 336 (2012).

    Article  Google Scholar 

  5. J.S. Carpenter, S.C. Vogel, J.E. Ledonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).

    Article  Google Scholar 

  6. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, and A. Misra, Appl. Phys. Lett. 97, 021909 (2010).

    Article  Google Scholar 

  7. N.A. Mara, A. Misra, R.G. Hoagland, A.V. Sergueeva, T. Tamayo, P. Dickerson, and A.K. Mukherjee, Mater. Sci. Eng. A 493, 274 (2008).

    Article  Google Scholar 

  8. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).

    Article  Google Scholar 

  9. A. Misra, and R.G. Hoagland, Encyclopedia of Nanoscience and Nanotechnology, ed. H.S. Nalwa (Valencia, CA: American Scientific Publishers, 2005).

  10. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  11. H. Suzuki and C.S. Barrett, Acta Metall. 6, 156 (1958).

    Article  Google Scholar 

  12. E.B. Tadmor and N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004).

    Article  MATH  Google Scholar 

  13. C.B. Carter and I.L.F. Ray, Philos. Mag. 35, 189 (1977).

    Article  Google Scholar 

  14. P. Coulomb, Scr. Metall. 15, 769 (1981).

    Article  Google Scholar 

  15. J.P. Hirth and J. Lothe, Theory of Dislocations (New York: Krieger Publishing Company, 1982).

    Google Scholar 

  16. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li, Acta Mater. 54, 655 (2006).

    Article  Google Scholar 

  17. M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  18. J.C. Sanchez, L.E. Murr, and K.P. Staudhammer, Acta Mater. 45, 3223 (1997).

    Article  Google Scholar 

  19. W. Yinmin, J. Tong, and M. En, Mater. Trans. 44, 1926 (2003).

    Article  Google Scholar 

  20. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Appl. Phys. Lett. 84, 592 (2004).

    Article  Google Scholar 

  21. X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, J. Appl. Phys. 96, 636 (2004).

    Article  Google Scholar 

  22. X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu, Appl. Phys. Lett. 83, 5062 (2003).

    Article  Google Scholar 

  23. C. Mingwei, M. En, K.J. Hemker, S. Hongwei, W. Yinmin, and C. Xuemei, Science 300, 1275 (2003).

    Article  Google Scholar 

  24. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen, Nature 391, 561 (1998).

    Article  Google Scholar 

  25. H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui, Phys. Rev. B 66, 024101/1 (2002).

  26. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, and E.J. Lavernia, J. Appl. Phys. 98, 34319 (2005).

    Article  Google Scholar 

  27. I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, D.J. Alexander, and C.T. Necker, Int. J. Plast. 27, 121 (2011).

    Article  Google Scholar 

  28. W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara, Appl. Phys. Lett. 100, 011911 (2012).

    Article  Google Scholar 

  29. P.H. Shingu, K. Yasuna, K.N. Ishihara, A. Otsuki, and M. Terauchi, Kiritani Symposium on Structural Defects in Advanced Materials (Switzerland: Gordon & Breach, 1996).

    Google Scholar 

  30. L. Thilly, F. Lecouturier, and J. Von Stebut, Acta Mater. 50, 5049 (2002).

    Article  Google Scholar 

  31. L. Thilly, P.O. Renault, V. Vidal, F. Lecouturier, S. Van Petegem, U. Stuhr, and H. Van Swygenhoven, Appl. Phys. Lett. 88, 191906 (2006).

    Article  Google Scholar 

  32. T.D. Shen, R.B. Schwarz, and X. Zhang, Appl. Phys. Lett. 87, 1 (2005).

    Google Scholar 

  33. T.D. Shen, X. Zhang, K. Han, C.A. Davy, D. Aujla, P.N. Kalu, and R.B. Schwarz, J. Mater. Sci. 42, 1638 (2007).

    Article  Google Scholar 

  34. J.B. Liu, Y.W. Zeng, and L. Meng, J. Alloys Compd. 464, 168 (2008).

    Article  Google Scholar 

  35. M. Niewczas, Dislocations in Solids, ed. F.R.N. Nabarro and J.P. Hirth (New York: Elsevier, 2007), Chapter 75, p. 263.

  36. J. Wang, I.J. Beyerlein, N.A. Mara, and D. Bhattacharyya, Scr. Mater. 64, 1083 (2011).

    Article  Google Scholar 

  37. J. Wang, J.P. Hirth, R.C. Pond, and J.M. Howe, Acta Mater. 59, 241 (2011).

    Article  Google Scholar 

  38. J.P. Hirth and R.C. Pond, Acta Mater. 44, 4749 (1996).

    Article  Google Scholar 

  39. J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  40. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, JOM (2012). doi:10.1007/s11837-012-0431-0

Download references

Acknowledgements

This work was supported as part of the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. A portion of this research was performed on the SMARTS instrument at the Lujan Center at Los Alamos National Laboratory supported by DOE-BES under FWP #2012LANLE389. The authors gratefully acknowledge useful discussion and collaboration with Dr. Dhriti Bhattacharyya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mara, N.A., Beyerlein, I.J., Carpenter, J.S. et al. Interfacially Driven Deformation Twinning in Bulk Ag-Cu Composites. JOM 64, 1218–1226 (2012). https://doi.org/10.1007/s11837-012-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0430-1

Keywords

Navigation