Skip to main content
Log in

Dependence of Protein Adsorption on Wetting Behavior of UHMWPE–HA–Al2O3–CNT Hybrid Biocomposites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in total hip and knee joint replacement. In order to enhance long-term durability/wear resistance properties, UHMWPE-based polymer–ceramic hybrid composites are being developed. Surface properties such as wettability and protein adsorption alter with reinforcement or with change in surface chemistry. From this perspective, the wettability and protein adsorption behavior of compression-molded UHMWPE–hydroxyapatite (HA)–aluminum oxide (Al2O3)–carbon nanotube (CNT) composites were analyzed in conjunction with surface roughness. The combined effect of Al2O3 and CNT shows enhancement of the contact angle by ~37° compared with the surface of the UHMWPE matrix reinforced with HA. In reference to unreinforced UHMWPE, protein adsorption density also increased by ~230% for 2 wt.%HA–5 wt.%Al2O3–2 wt.%CNT addition to UHMWPE. An important conclusion is that the polar and dispersion components of the surface free energy play a significant role in wetting and protein adsorption than do the total free energy or chemistry of the surface. The results of this study have major implications for the biocompatibility of these newly developed biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.F. Williams, Definition in Biomaterials, Proceeding of a Consensus Conference of the European Society for Biomaterials (New York: Elsevier, 1987).

    Google Scholar 

  2. W. Bonfield, M.D. Grynpas, A.E. Tully, J. Bowman, and J. Abram, Biomaterials 2, 185 (1981).

    Article  Google Scholar 

  3. S. Bodhak, S. Nath, and B. Basu, J. Biomater. Appl. 23, 407 (2009).

    Article  Google Scholar 

  4. Z. Lin, C.J. Han, H.J. Zhang, F. Li, A. Lin, C. Han, H. Zhang, and F. Li, J. Mater. Sci. Mater. Med. 19, 2569 (2008).

    Article  Google Scholar 

  5. S.R. Bakshi, K. Balani, T. Laha, J. Tercero, and A. Agarwal, JOM 59, 50 (2007).

    Article  Google Scholar 

  6. B. Elmengaard, J.E. Bechtlod, and K. Soballe, Biomaterials 26, 3521 (2005).

    Article  Google Scholar 

  7. R.S. Kane and A.D. Stroock, Biotechnol. Progr. 23, 316 (2007).

    Article  Google Scholar 

  8. F. Zhao, Y. Zhao, Y. Liu, X. Chang, C. Chen, and Y. Zhao, Small 7, 1322 (2011).

    Article  Google Scholar 

  9. F.L. Yap and Y. Zhang, Biosens. Bioelectron. 22, 775 (2007).

    Article  Google Scholar 

  10. F.A. Denis, P. Hanarp, D.S. Sutherland, J. Gold, C. Mustin, P.G. Rouxhet, and Y.F. Dufrêne, Langmuir 18, 819 (2002).

    Article  Google Scholar 

  11. T.J. Webster, L.S. Schadler, R.W. Siegel, and R. Bizios, Tissue Eng. 7, 291 (2001).

    Article  Google Scholar 

  12. M.J.P. Biggs, R.G. Richards, and M.J. Dalby, Nanomedicine 6, 619 (2010).

    Article  Google Scholar 

  13. M. Wang, Biomaterials 24, 2133 (2003).

    Article  Google Scholar 

  14. W. Bonfield, M. Wang, and K.E. Tanner, Acta Mater. 46, 2509 (1998).

    Article  Google Scholar 

  15. L. Fang, Y. Leng, and P. Gao, Biomaterials 27, 3701 (2006).

    Article  Google Scholar 

  16. G. Tripathi, A.K. Dubey, and B. Basu, J. Appl. Polym. Sci. (2001). doi:10.1002/app.35339.

  17. S. Nath, S. Bodhak, and B. Basu, J. Biomed. Mater. Res. B 88, 1 (2009).

    Google Scholar 

  18. B. Basu, D. Jain, N. Kumar, P. Choudhury, A. Bose, S. Bose, and P. Bose, J. Appl. Polym. Sci. 121, 2500 (2011).

    Article  Google Scholar 

  19. D.K. Owens and R.C. Wendtn, J. Appl. Polym. Sci. 13, 1741 (1969).

    Article  Google Scholar 

  20. G. Tripathi and B. Basu, J. Appl. Polym. Sci. (2011). doi:10.1002/app.35236.

  21. G. Tripathi and B. Basu, Ceram. Int. 38, 341 (2012).

    Article  Google Scholar 

  22. N. Satyanarayana, S.K. Sinha, and B.H. Ong, Sens. Actuator A 128, 98 (2006).

    Article  Google Scholar 

  23. M. Zhang, P. Pare, R. King, and S.P. James, J. Biomed. Mater. Res. A 82, 18 (2007).

    Google Scholar 

  24. Y. Okabe, S. Kurihara, T. Yajima, Y. Seki, I. Nakamura, and I. Takanob, Surf. Coat. Technol. 196, 303 (2005).

    Article  Google Scholar 

  25. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Article  Google Scholar 

  26. N. Shinozaki, H. Kaku, T. Noboritate, and K. Mukai, Metall. Mater. Trans. A 34, 183–185 (2003).

    Article  Google Scholar 

  27. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Jhu, Adv. Mater. 14, 1857 (2002).

    Article  Google Scholar 

  28. M. Gleiche, L.F. Chi, and H. Fuchs, Nature 403, 173 (2000).

    Article  Google Scholar 

  29. A.M. Higgins and R.A.L. Jones, Nature 404, 476 (2000).

    Article  Google Scholar 

  30. S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, and D. Jhu, J. Phys. Chem. B 106, 9274 (2002).

    Article  Google Scholar 

  31. M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, and L. Jiang, Adv. Mater. 17, 1977 (2005).

    Article  Google Scholar 

  32. D. Janssen, R.D. Palma, S. Verlaak, P. Heremans, and W. Dehaen, Thin Solid Films 515, 1433 (2006).

    Article  Google Scholar 

  33. J.-W. Shen, T. Wu, Q. Wang, and Y. Kang, Biomaterials 29, 3847 (2008).

    Article  Google Scholar 

  34. Y. Sugiyama, Y. Inoue, E. Muneyuki, H. Haneda, and M. Fujimoto, J. Electron Microsc. 5, 143 (2006).

    Google Scholar 

  35. H. Akasaka, A. Takeda, T. Suzuki, M. Nakano, S. Ohshio, and H. Saitoh, Diam. Relat. Mater. 20, 213 (2011).

    Article  Google Scholar 

  36. K. Rezwan, L.P. Meier, M. Rezwan, J. Voros, M. Textor, and L.J. Gauckler, Langmuir 20, 10055 (2004).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the funding from the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantesh Balani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Tripathi, G., Basu, B. et al. Dependence of Protein Adsorption on Wetting Behavior of UHMWPE–HA–Al2O3–CNT Hybrid Biocomposites. JOM 64, 506–513 (2012). https://doi.org/10.1007/s11837-012-0295-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0295-3

Keywords

Navigation