Skip to main content
Log in

Irradiation induced creep of graphite

  • Materials for Nuclear Power
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The status of graphite irradiation induced creep strain prediction is reviewed and major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K.L. Tsang, B.J. Marsden, Management of Ageing Processes in Graphite Reactor Cores, ed. G. Neighbour (Cambridge, U.K.: RSC Publishing, 2007), pp. 158–166.

    Google Scholar 

  2. H. Li. A.S.L. Fok, and B.J. Marsden, J. Nucl. Mater., 372 (2006), p. 164.

    Article  ADS  Google Scholar 

  3. H. Wang and S. Yu, Nucl. Eng. & Des., 238 (2008), p. 2256.

    Article  CAS  Google Scholar 

  4. M. Davies and M. Bradford, J. Nucl. Mater., 381 (2008), p. 39.

    Article  CAS  ADS  Google Scholar 

  5. T.D. Burchell, J. Nucl. Mater., 38 (2008), p. 46.

    Article  ADS  Google Scholar 

  6. B.T. Kelly and T.D. Burchell, Carbon, 32 (1994), p. 119.

    Article  CAS  Google Scholar 

  7. G. Haag, Report No. Jul-4183, “Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation” (Jülich, Germany: FZ-J, 2005), juwel.fz-juelich.de:8080/dspace/bitstream/2128/541/1/Juel_4183_Haag.pdf .

    Google Scholar 

  8. B.T. Kelly and A.J.E. Foreman, Carbon, 12 (1974), p. 151.

    Article  CAS  Google Scholar 

  9. D.G. Martin and R.W. Henson, Phil. Mag. 9 (1967) 659.

    Article  ADS  Google Scholar 

  10. D.G. Martin and R.W. Henson, Carbon, 5 (1967), p. 314.

    Article  Google Scholar 

  11. L.L. Snead and T.D. Burchell, J. Nucl. Mater., 224 (1995), p. 222.

    Article  CAS  ADS  Google Scholar 

  12. L.L. Snead, J. Nucl. Mater., 381 (2008), p. 76.

    Article  CAS  ADS  Google Scholar 

  13. B.T. Kelly, J.H.W. Simmons, J. H. Gittus, and P.T. Nettley, Proc. Third UN Conf. on Peaceful uses of Atomic Energy, 10 (Vienna, Austria: Iit’l. Atomic Energy Agency, 1972), p. 339.

    Google Scholar 

  14. M.I. Heggie, CR. Davidson, Gi. Haffenden, L. Suarez-Martinez, J-M. Campanera, and G. Savini, “Buckle, Ruck and Tuck—The Response of Graphite to Irradiation,” CARBON 2007 (Oak Ridge, TN: American Carbon Society, 2007).

    Google Scholar 

  15. T.D. Burchell, “Fission Reactor Applications of Carbon,” in: Carbon Materials for Advanced Technologies, ed. T.D. Burchell (Oxford, U.K.: Elsevier Science, 1999).

    Google Scholar 

  16. B.T. Kelly and J.E. Brocklehurst, J. Nucl. Mater., 65 (1977), p. 79.

    Article  CAS  ADS  Google Scholar 

  17. G. Jouquet, G. Kleist, and H. Veringa, J. Nucl. Mater., 65 (1977), p. 86.

    Article  CAS  ADS  Google Scholar 

  18. T. Oku, M. Eto, and S. Ishiyama, J. Nucl. Mater., 172 (1990), p. 77.

    Article  CAS  ADS  Google Scholar 

  19. H. Hansen, R. Loelgen, and M. Cundy, J. Nucl. Mater., 65 (1977), p. 148.

    Article  ADS  Google Scholar 

  20. J.E. Brocklehurst and R.G. Brown, Carbon, 7 (1969), p. 487.

    Article  CAS  Google Scholar 

  21. C.R. Kennedy, “Irradiation Creep of Graphite” (Paper presented at the International Symposium on Carbon, Tsukuba, Japan, 4–8 November, 1990), doi 10.2172/6410826.

  22. J.E. Brocklehurst and B.T. Kelly, Carbon, 31 (1993), p. 155.

    Article  CAS  Google Scholar 

  23. B.T. Kelly, Carbon, 30 (1992), p. 379.

    Article  CAS  Google Scholar 

  24. M.A. Davies and M.R. Bradford, “Modelling Graphite Ageing: Black Art or Forensic Science?” in: Management of Ageing Processes in Graphite Reactor Cores, ed. G.B. Neighbour (Cambridge, U.K.: RSC Publishing, 2007).

    Google Scholar 

  25. M.R. Bradford and A.G. Steer, J. Nucl. Mater., 381 (2008), p. 137.

    Article  CAS  ADS  Google Scholar 

  26. W.J. Gray, Carbon, 11 (1973), p. 383.

    Article  CAS  Google Scholar 

  27. C.R. Kennedy, M. Cundy, and G. Kliest, in: Proc. CARBON’ 88 (London: Institute of Physics, 1988), pp. 443–445.

    Google Scholar 

  28. J.W.H. Simmons, Radiation Damage in Graphite (Oxford, U.K.: Pergamon Press, 1965).

    Google Scholar 

  29. B.T. Kelly, W.H. Martin, and P.T. Nettley, Phil. Trans. Roy Soc., A260 (1966), p. 51.

    ADS  Google Scholar 

  30. A.V. Subbotin, A.S. Pokrovskii, and D.V. Khar’kov, Atomic Energy, 105(2) (2008), p. 104.

    Article  CAS  Google Scholar 

  31. J.E. Brocklehurst and B.T. Kelly, Carbon, 31 (1993), p. 155.

    Article  CAS  Google Scholar 

  32. T.D. Burchell, “Irradiation Induced Creep in Graphite at High Temperature and Dose—A Revised Model,” submitted to Journal of Nuclear Materials (May 2010).

  33. G.S. Was, Fundamentals of Radiation Materials Science (New York: Springer, 2007).

    Google Scholar 

  34. I. Charit and K.I. Murty, J. Nucl. Mater., 374 (2008), p. 354.

    Article  CAS  ADS  Google Scholar 

  35. K.L. Murty, Seventh International Conference on Creep and Fracture of Engineering Materials and Structures, ed. J.C. Earthman and F.A. Mohamed (Warrendale, PA: TMS, 1977), pp. 69–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Burchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchell, T.D., Murty, K.L. & Eapen, J. Irradiation induced creep of graphite. JOM 62, 93–99 (2010). https://doi.org/10.1007/s11837-010-0145-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0145-0

Keywords

Navigation