Skip to main content
Log in

Fracture processes and mechanisms of crack growth resistance in human enamel

  • Biological and Biomedical Materials / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Ten Cate, Oral Histology: Development, Structure and Function, Vol. 5 (St. Louis, MO: Mosby, 1998), pp. 208–212.

    Google Scholar 

  2. C. Robinson, J. Kirkham, and R. Shore, Dental Enamel: Formation to Destruction (Boca Raton, FL: CRC Press, 1995), pp. 151–152.

    Google Scholar 

  3. H. Chai et al., Proc. Waff. Acad. Sci. USA, 106 (2009), pp. 7289–7293.

    Article  CAS  ADS  Google Scholar 

  4. R. Hassan, A A Caputo, and R.F. Bunshah, J. Dent. Res., 60 (1981), pp. 820–827.

    CAS  PubMed  Google Scholar 

  5. H.H.K. Xu et al., J. Dent. Res., 77 (1998), pp. 472–480.

    Article  CAS  PubMed  Google Scholar 

  6. S.N. White et al., J. Dent. Res., 80 (2001), pp. 321–326.

    Article  CAS  PubMed  Google Scholar 

  7. S. Park et al., Dent. Mater., 24 (2008), pp. 1477–1485.

    Article  CAS  PubMed  Google Scholar 

  8. D. Bajaj and D. Arola, Biomaterials, 30 (2009), pp. 4037–4046.

    Article  CAS  PubMed  Google Scholar 

  9. D. Zhang et al., Exp. Mech., 47 (2007), pp. 325–336.

    Article  Google Scholar 

  10. K. Niihara, Fracture Mechanics of Ceramics, Vol. 5, ed. R.C. Bradt et al. (New York: Plenum Publishing Co., 1983), pp. 97–105.

    Google Scholar 

  11. D. Zhang, M. Luo, and D. Arola, Opt Eng., 45 (2006), pp. 1–9.

    CAS  Google Scholar 

  12. G.D. Quinn and R.C. Bradt, J. Am. Ceram. Soc., 90 (2007), pp. 673–680.

    Article  CAS  Google Scholar 

  13. G.D. Quinn, Mechanical Properties and Performance of Engineering Ceramics II: Ceramic Engineering and Science Proceedings, 27 (2007), pp. 45–62.

    Article  Google Scholar 

  14. D. Munz, J. Am. Ceram. Soc, 90 (2007), pp, 1–15.

    Article  CAS  Google Scholar 

  15. J.J. Kruzic et al., J. Mech. Behav. Biomed. Mater., 2 (2009), pp. 384–395.

    Article  CAS  PubMed  Google Scholar 

  16. V. Imbeni et al., Nat. Mater., 4 (2005), pp. 229–232.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications 3rd edition (Boca Raton, FL: CRC Press, 2005).

    MATH  Google Scholar 

  18. Z. Xie et al., Biomaterials, 29 (2008), pp. 2697–2703.

    Article  CAS  PubMed  Google Scholar 

  19. D. Bajaj and D. Arola, Acta Biomat., 5 (2009), pp. 3045–3056.

    Article  CAS  Google Scholar 

  20. A.C. Fisher-Cripps and B.R. Lawn, Acta Mater., 44 (1996), pp. 519–527.

    Article  Google Scholar 

  21. B.R. Lawn, A.G. Evans, and D.B. Marshall, J.Am. Ceram. Soc., 63 (1980), pp. 574–581.

    Article  CAS  Google Scholar 

  22. J.J.W. Lee et al., J. Dent. Res., 88 (2000), pp. 224–228.

    Google Scholar 

  23. R.F. Cook and G.M. Pharr, J. Am. Ceram. Soc., 73 (1990), pp. 787–817.

    Article  CAS  Google Scholar 

  24. G. Sines and M. Adams, Fracture Mechanics of Ceramics, Vol. 3, ed. R.C. Bradt, D.P.H. Hasselman, and F.F. Lange (New York: Plenum Press, 1978), pp. 403–434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwayne Arola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajaj, D., Park, S., Quinn, G.D. et al. Fracture processes and mechanisms of crack growth resistance in human enamel. JOM 62, 76–82 (2010). https://doi.org/10.1007/s11837-010-0113-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0113-8

Keywords

Navigation