Skip to main content
Log in

The solution precursor plasma spray processing of nanomaterials

  • Functional Coatings
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solution precursor plasma spray (SPPS) synthesis is a simple, single-step, and rapid technique for synthesizing nano-ceramic materials from solution precursors. This innovative method uses molecularly mixed precursors as liquids, avoiding a separate processing method for the preparation of powders and enabling the synthesis of a wide range of metal oxide powders and coatings. Also, this technique is considered to be promising for the formation of non-equilibrium phases in multi-component oxide systems. This short review provides an insight into the important aspects of SPPS, the properties obtained in comparison to conventional plasma spray, and the potential applications of the SPPS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fauchais et al., “Developments in Direct Current Plasma Spraying,” Surface & Coatings Technology, 201 (2006), pp. 1908–1921.

    Article  CAS  Google Scholar 

  2. J. Karthikeyan et al., “Plasma Spray Synthesis of Nanomaterial Powders and Deposits,” Materials Science and Engineering A, 238 (1997), pp. 275–286.

    Article  Google Scholar 

  3. X. Ma et al., “Solid Oxide Fuel Cell Development by Using Novel Plasma Spray Techniques,” Journal of Fuel Cell Science and Technology, 2 (2005), pp. 190–196.

    Article  CAS  Google Scholar 

  4. P.S. Devi et al., “Single-Step Deposition of Eu-Doped Y2O3 Phosphor Coatings through a Precursor Plasma Spraying Technique,” Journal of Materials Research, 17 (2002), pp. 2771–2774.

    CAS  Google Scholar 

  5. X.Z. Guo et al., “Synthesis of Yttrium Iron Garnet (YIG) by Citrate-Nitrate Gel Combustion and Precursor Plasma Spray Processes,” Journal of Magnetism and Magnetic Materials, 295 (2005), pp. 145–154.

    Article  CAS  Google Scholar 

  6. T.W. Coyle et al., “Plasma Spray Deposition of Hydroxyapatite Coatings from Sol Precursors,” Materials Science Forum, 539–543 (2007), pp. 1128–1133.

    Google Scholar 

  7. A. Ioncea et al., “Bioactive Coatings Based on Hydroxyapatite,” Key Engineering Materials, 132–136 (1997), pp. 1532–1535.

    Article  Google Scholar 

  8. E. Garcia et al., “Hydroxyapatite Coatings Produced by Plasma Spraying of Organic Based Solution Precursor,” Ceramic Engineering and Science Proceedings, Advances in Bioceramics and Biocomposites II—A Collection of Papers Presented at the 30th International Conference on Advanced Ceramics and Composites, 27 (2006), pp. 103–110.

    Google Scholar 

  9. F. Gitzhofer, M. Bonneau, and M. Boulos, “Double Doped Ceria Electrolyte Synthesized by Solution Plasma Spraying with Induction Plasma Technology,” Thermal Spray 2001: New Surfaces for a New Millenium, ed. C.C. Berndt, K.A. Khor, and E.F. Lugscheider (Materials Park, OH: ASM International, 2001), pp. 61–68.

    Google Scholar 

  10. V. Viswanathan et al., “High-Temperature Oxidation Behavior of Solution Precursor Plasma Sprayed Nanoceria Coating on Martensitic Steels,” Journal of the American Ceramic Society, 90 (2007), pp. 870–877.

    Article  CAS  Google Scholar 

  11. A.D. Jadhav et al., “Thick Ceramic Thermal Barrier Coatings with High Durability Deposited using Solution-Precursor Plasma Spray,” Materials Science and Engineering A, 405 (2005), pp. 313–320.

    Article  CAS  Google Scholar 

  12. L. Xie et al., “Deposition of Thermal Barrier Coatings using the Solution Precursor Plasma Spray Process,” Journal of Materials Science, 39 (2004), pp. 1639–1646.

    Article  CAS  Google Scholar 

  13. P.P. Nitin et al., “Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray,” Acta Materialia, 49 (2001), pp. 2251–2257.

    Article  Google Scholar 

  14. L. Xie et al., “Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings,” Surface & Coatings Technology, 201 (2006), pp. 1058–1064.

    Article  CAS  Google Scholar 

  15. X. Ma et al., “Low Thermal Conductivity Thermal Barrier Coating Deposited by the Solution Plasma Spray Process,” Surface & Coatings Technology, 201 (2006), pp. 4447–4452.

    Article  CAS  Google Scholar 

  16. A.D. Jadhav et al., “Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures,” Acta Materialia, 54 (2006), pp. 3343–3349.

    Article  CAS  Google Scholar 

  17. L. Xie et al., “Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings,” Materials Science and Engineering A, 381 (2004), pp. 189–195.

    Article  CAS  Google Scholar 

  18. L. Xie et al., “Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process,” Surface and Coatings Technology, 177–178 (2004), pp. 103–107.

    Article  CAS  Google Scholar 

  19. A.L. Vasiliev, P.P. Nitin, and X. Ma, “Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: I. Binary ZrO2-Al2O3 System,” Acta Materialia, 54 (2006), pp. 4913–4920.

    Article  CAS  Google Scholar 

  20. A.L. Vasiliev and N.P. Padture, “Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: II. Ternary ZrO2-Y2O3-Al2O3 System,” Acta Materialia, 54 (2006), pp. 4921–4928.

    Article  CAS  Google Scholar 

  21. W.G. Mao et al., “Modeling of Residual Stresses Variation with Thermal Cycling in Thermal Barrier Coatings,” Mechanics of Materials, 38 (2006), pp. 1118–1127.

    Article  Google Scholar 

  22. A.G. Evans, M.Y. He, and J.W. Hutchinson, “Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings,” Progress in Materials Science, 46 (2001), pp. 249–271.

    Article  CAS  Google Scholar 

  23. A.G. Evans et al., “Mechanisms Controlling the Durability of Thermal Barrier Coatings,” Progress in Materials Science, 46 (2001), pp. 505–553.

    Article  Google Scholar 

  24. X. Liangde et al., “Deposition of Thermal Barrier Coatings using the Solution Precursor Plasma Spray Process,” Journal of Materials Science, 39 (2004), pp. 1639–1646.

    Article  Google Scholar 

  25. K. Bobzin, E. Lugscheider, and R. Nickel, “Modeling and Simulation in the Production Process Control and Material Property Calculation of Complex Structured EB-PVD TBCs,” Computational Materials Science, 39 (2007), pp. 600–610.

    Article  Google Scholar 

  26. X. Ning et al., “Modification of Microstructure and Electrical Conductivity of Plasma-Sprayed YSZ Deposit through Post-Densification Process,” Materials Science and Engineering: A, 428 (2006), pp. 98–105.

    Article  CAS  Google Scholar 

  27. A.D. Jadhav et al., “Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures,” Acta Materialia, 54 (2006), pp. 3343–3349.

    Article  CAS  Google Scholar 

  28. L. Xie et al., “Identification of Coating Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process using Model Spray Experiments,” Materials Science and Engineering A, 362 (2003), pp. 204–212.

    Article  CAS  Google Scholar 

  29. S. Sampath et al., “Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia,” Materials Science and Engineering A, 272 (1999), pp. 181–188.

    Article  Google Scholar 

  30. L. Xie et al., “Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings,” Materials Science and Engineering A, 381 (2004), pp. 189–195.

    Article  CAS  Google Scholar 

  31. S. Guo and Y. Kagawa, “Effect of Thermal Exposure on Hardness and Young’s Modulus of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings,” Ceramics International, 32 (2006), pp. 263–270.

    Article  CAS  Google Scholar 

  32. N.P. Padture et al., “Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray,” Acta Materialia, 49 (2001), pp. 2251–2257.

    Article  CAS  Google Scholar 

  33. A. Jadhav et al., “Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution-Precursor Plasma Spray,” Materials Science and Engineering: A, 405 (2005), pp. 313–320.

    Article  CAS  Google Scholar 

  34. M. Gell et al., “Mechanisms of Spallation of Solution Precursor Plasma Spray Thermal Barrier Coatings,” Surface & Coatings Technology, 188–189 (2004), pp. 101–106.

    Article  CAS  Google Scholar 

  35. A.L. Vasiliev, N.P. Padture, and X. Ma, “Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: I. Binary ZrO2-Al2O3 System,” Acta Materialia, 54 (2006), pp. 4913–4920.

    Article  CAS  Google Scholar 

  36. J. Li et al., “Phase Structure and Luminescence Properties of Eu3+-Doped TiO2 Nanocrystals Synthesized by Ar/O2 Radio Frequency Thermal Plasma Oxidation of Liquid Precursor Mists,” Journal of Physical Chemistry B, 110 (2006), pp. 1121–1127.

    Article  CAS  Google Scholar 

  37. L. Xie et al., “Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process,” Surface and Coatings Technology, 177–178 (2001), pp. 103–107.

    Google Scholar 

  38. A. Ozturk and B.M. Cetegen, “Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursor Droplets,” Materials Science and Engineering A, 384 (2004), pp. 331–351.

    Article  CAS  Google Scholar 

  39. A. Ozturk and B.M. Cetegen, “Modeling of Axially and Transversely Injected Precursor Droplets into a Plasma Environment,” International Journal of Heat and Mass Transfer, 48 (2005), pp. 4367–4383.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinley, E., Babu, K.S. & Seal, S. The solution precursor plasma spray processing of nanomaterials. JOM 59, 54–59 (2007). https://doi.org/10.1007/s11837-007-0090-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0090-8

Keywords

Navigation