Skip to main content
Log in

Transcriptional responses of tolerant and susceptible soybeans to soybean aphid (Aphis glycines Matsumura) herbivory

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The soybean aphid, Aphis glycines Matsumura, was introduced in 2000 to North America and has become one of the most significant pests to soybean, Glycine max (L.) Merrill, production. Possible solutions to this problem are the use of resistant plants and the understanding of the genes involved in plant resistance. In this study, we sought to better understand the genes involved in the tolerance response of soybean plants to the soybean aphid, utilizing tolerant (KS4202) and susceptible (K-03-4686) plants. Studies were conducted under greenhouse conditions. Leaf samples of both tolerant and susceptible plants were collected at day 5 and day 15 after infestation and analyzed by sequencing-by-synthesis on an Illumina GA II X instrument. In the tolerant genotype, 3 and 36 genes were found to be differentially expressed in the infested plants compared to the control treatments at day 5 and day 15, respectively. A similar comparison in the susceptible genotype revealed 0 and 11 genes to be differentially expressed at day 5 and day 15, respectively. Predominately, genes related to plant defense, such as WRKY transcription factors, peroxidases, and cytochrome p450s, were up-regulated in the tolerant genotype 15 days post-infestation by aphids. In contrast, none of these genes were similarly up-regulated in the susceptible plants, suggesting that consistent elevation of defense responses is important to plant tolerance. However, significant genotypic differences in global gene expression were also found when transcriptomes from control uninfested plants were compared at both day 5 and 15. qPCR validation of select genes confirmed our RNA-seq data. These comparisons indicate that potentially broader regulation of transcriptomes also contributes to the tolerance response and provides data that the tolerant genotype (KS4202) could be useful in soybean breeding programs trying to minimize production losses accruing from soybean aphid feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alleman RJ, Grau CR, Hogg DB (2002) Soybean aphid host range and virus transmission efficiency. In: Proceedings of Wisconsin Fertilizer, Aglime and Pest Management Conference. http://www.soils.wisc.edu/extension/FAPM/2002proceedings/Alleman-Conf-2002.pdf

  • Anders S (2010) HTSeq: Analysing high-throughput sequencing data with Python. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Argandona VH, Chaman M, Cardemil L, Munoz O, Zuniga GE, Corcuera LJ (2001) Ethylene production and peroxidase activity in aphid-infested barely. J Chem Ecol 27:53–68

    CAS  PubMed  Google Scholar 

  • Ballaré CL (2014) Light regulation of plant defense. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-050213-040145

    PubMed  Google Scholar 

  • Beckendorf EA, Catangui MA, Riedell WE (2008) Soybean aphid feeding injury and soybean yield, yield components, and seed composition. Agron J 100:237–246

    Google Scholar 

  • Blanvillain R, Kim JH, Wu S, Lima A, Ow DW (2009) Oxidative stress 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. Plant J 57:654–665

    CAS  PubMed  Google Scholar 

  • Botha AM, Swanevelder ZH, Lapitan NLV (2010) Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia. Environ Entomol 39:1206–1231

  • Boyd RS (2006) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176

    Google Scholar 

  • Boyko EV, Smith CM, Vankatappa T, Bruno J, Deng Y, Starkey SR, Klaahsen D (2006) The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences modulate aphid–wheat interaction. J Econ Entomol 99:1430–1445

    CAS  PubMed  Google Scholar 

  • Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci. 4:1–15

    Google Scholar 

  • Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44:314–333

    CAS  PubMed  Google Scholar 

  • Brosius TR, Higley LG, Hunt TE (2007) Population dynamics of soybean aphid and biotic mortality at the edge of its range. J Econ Entomol 100:1268–1275

    PubMed  Google Scholar 

  • Cao J (2012) The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS One 7:e46944. doi:10.1371/journal.pone.0046944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandran P (2011) Different sources of resistance in soybean against soybean aphid biotypes. M.S. Thesis. Kansas State University, Manhattan, KS

  • Chen JQ, Rahbé Y, Delobel B, Sauvion N, Guillaud J, Febvay G (1997) Melon resistance to the aphid Aphis gossypii: behavioural analysis and chemical correlations with nitrogenous compounds. Entomol Exp Appl 85(1):33–44

    CAS  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant cell. 21:3554–3566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step RNA isolation from cultured cells or tissue. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Conte SS, Chu HH, Rodriguez DC, Punshon T, Vasques KA, Salt DE, Walker EL (2013) Arabidopsis thaliana Yellow Stipe1-Like4 and Yellow Stripe1-Like6 localize cellular membranes and are involved in metal homeostasis. Front Plant Sci 4:1–15

    Google Scholar 

  • Couldridge C, Newbury HJ, Ford-Lloyd B, Bale J, Pritchard J (2007) Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. Bull Entomol Res 97:523–532

    CAS  PubMed  Google Scholar 

  • Crute IR, Dunn JA (1980) An association between resistance to root aphid (Pemphigus bursarius L.) and downy mildew (Bremia lactucae Regel) in lettuce. Euphytica 29(2):483–488

    Google Scholar 

  • De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defense responses in Arabidopsis thaliana. Plant, Cell Environ 32:1548–1560

    Google Scholar 

  • Diaz-Montano J, Reese JC, Schapaugh WT, Campbell LR (2006) Characterization of antibiosis and antixenosis to the soybean aphid (Hemiptera: Aphididae) in several soybean genotypes. J Econ Entomol 99:1884–1889

    PubMed  Google Scholar 

  • Eck LV, Schultz T, Leach JE, Scofield SR, Peairs FB, Botha AM, Lapitan NLV (2010) Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia. Plant Biotechnol 8:1023–1032

    Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean. Iowa State University Cooperative Extension Service Special Report 80. Iowa State University, Ames, IA

  • Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Sarath G, Burd JD (2007) Physiology and biochemical responses of resistant and susceptible wheat to injury by the Russian wheat aphid. J Econ Entomol 100:1692–1703

    CAS  PubMed  Google Scholar 

  • Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaquerel E, Stitz M, Kallenbach M, Baldwin IT (2013) Jasmonate signaling in the field, part II: insect-guided characterization of genetic variations in jasmonate-dependent defenses of transgenic and natural Nicotina attenuate populations. Method Mol Biol. 1011:97–109

    CAS  Google Scholar 

  • Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) P23 and HSP20/α-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529:162–167

    CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    PubMed Central  PubMed  Google Scholar 

  • Gill SG, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    PubMed Central  PubMed  Google Scholar 

  • Gutsche A, Heng-Moss T, Sarath G, Twigg P, Xia Y, Lu G, Mornhinweg D (2009) Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bull Entomol Res 99:163–173

    CAS  PubMed  Google Scholar 

  • Guy CL, Li QB (1998) The organization and evolution of the spinach stress 70 molecular chaperone family. Plant Mol Biol 10:539–556

    CAS  Google Scholar 

  • Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuate. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol 131:1894–1902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartman GL, Domier LL, Wax LM, Helm CG, Onstad DW, Shaw JT, Solter LF, Voegtlin DJ, D’Arcy CJ, Gray ME, Steffey KL, Isard SA, Orwick PL (2001) Occurrence and distribution of Aphis glycines on soybeans in Illinois in 2000 and its potential control. http://planthealthprogress.org/current/briefs/aphisglycines/article.htm

  • Heng-Moss TM, Sarath G, Baxendale FP, Novak D, Bose S, Xinhi N, Quisenberry S (2004) Characterization of oxidative enzyme changes in buffalograsss challenged by Blissus occiduus. J Econ Entomol 97:1086–1095

    CAS  PubMed  Google Scholar 

  • Hill CB, Li Y, Hartman GL (2004) Resistance to the soybean aphid in soybean germplasm. Crop Sci 44:98–106

    Google Scholar 

  • Hill CB, Li Y, Hartman GL (2006a) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci 46:1601–1605

    Google Scholar 

  • Hill CB, Li Y, Hartman GL (2006b) Soybean aphid resistance in soybean Jackson is controlled by a single dominant gene. Crop Sci 46:1606–1608

    CAS  Google Scholar 

  • Hill CB, Kim K, Crull L, Diers BW, Hartman GL (2009) Inheritance of resistance to the soybean aphid in soybean PI 200583. Crop Sci 49:1193–1200

    CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Hatsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Google Scholar 

  • Hu Z, Xu F, Guan L, Qian P, Liu Y, Zhang H, Huang Y, Hou S (2013) The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis. J Exp Bot. http://jxb.oxfordjournals.org/content/early/2014/01/12/jxb.ert463.abstract

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    CAS  PubMed  Google Scholar 

  • Jespersen HM, Kjaersgard IVH, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang ST, Mian MAR, Hammond RB (2008) Soybean aphid resistance in PI 243540 is controlled by a single dominant gene. Crop Sci 48:1744–1748

    CAS  Google Scholar 

  • Kanter U, Usadel B, Guerinearu F, Li Y, Pauly M, Tenhaken R (2005) The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221:243–254

    CAS  PubMed  Google Scholar 

  • Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD (2008) Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411–425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    CAS  PubMed  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in response to aphids. Plant Physiol 143:849–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A family from Arabidopsis thaliana. J Exp Bot 59:403–419

    CAS  PubMed  Google Scholar 

  • Kobe B, Kajava AV (2001) The luecine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2011) The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant Cell Physiol 52:824–836

    CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed Central  PubMed  Google Scholar 

  • Lapitan NLV, Hess A, Wang H, van Eck L, Scofield S, Botha AM (2008) Different sets of wheat genes are used in Dn7-mediated resistance to feeding by two biotypes of Russian wheat aphid. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Shart P (eds) 11th international wheat genetics symposium. Sydney University Press, Brisbane, Australia, p P128

    Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss of function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J. 44:769–782

    PubMed  Google Scholar 

  • Lee SI, Lee SH, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH, Cho MJ (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stål) in transgenic rice. Mol Breed 5:1–9

    Google Scholar 

  • Li J, Brader G, Palva ET (2008a) Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol Plant 1:482–495

    CAS  PubMed  Google Scholar 

  • Li Y, Zou J, Li M, Bilgin DD, Vodkin LO, Hartman GL, Clough SJ (2008b) Soybean defense responses to the soybean aphid. New Phytol 179:185–195

    CAS  PubMed  Google Scholar 

  • Lin X, Kaul S, Rounsley S, Shea TP et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    CAS  PubMed  Google Scholar 

  • Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperon 6:201–208

    CAS  Google Scholar 

  • Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundberg E, Storm P, Schröder WP, Funk C (2011) Crystal structure of the TL29 protein from Arabidopsis thaliana: an APX homolog without peroxidase activity. J Struct Biol 176:24–31

    CAS  PubMed  Google Scholar 

  • Mayer K, Schüller C, Wambutt R, Murphy G et al (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777

    CAS  PubMed  Google Scholar 

  • McCarville MT, Kanobe C, MacIntosh GC, O’Neal M (2011) What is the economic threshold of soybean aphid (Hemiptera: Aphididae) in enemy-free space? J Econ Entomol 104(3):845–852

    CAS  PubMed  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. PNAS 94:5473–5477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mensah C, DiFonzo C, Nelson RL, Wang D (2005) Resistance to soybean aphid in early maturing soybean germplasm. Crop Sci 45:2228–2233

    Google Scholar 

  • Mian MAR, Hammond RB, St Martin SK (2008) New plant introductions with resistance to the soybean aphid. Crop Sci 48:1055–1061

    Google Scholar 

  • Milligan SB, John B, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murgia I, Tarantino D, Soave C, Morandini P (2011) Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. J Plant Physiol 168:894–902

    CAS  PubMed  Google Scholar 

  • National Agriculture Pest Information System (NAPIS) (2011) Reported status of soybean aphid–Aphis glycines. NAPHIS, Purdue University, West Lafayette, Indiana

    Google Scholar 

  • Ni S, Quisenberry SS, Heng-Moss T, Markwell J, Sarath G, Klucas R, Baxendale F (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and non-symptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ Entomol 94:743–751

    CAS  PubMed  Google Scholar 

  • Nombela G, Williamson VW, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

    CAS  PubMed  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998) Phosphate transporter gene family of Arabidopsis thaliana. DNA Res 5:261–269

    CAS  PubMed  Google Scholar 

  • Ostlie K (2002) Managing soybean aphid. University of Minnesota Extension Service

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    PubMed Central  PubMed  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    PubMed  Google Scholar 

  • Park JA, Ahn JW, Kim YK, Kim SJ, Kim JK, Kim WT, Pai HS (2005a) Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J 42:153–163

    CAS  PubMed  Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2005b) Identification of expression profiles of sorghum genes in response to greenbug phloem feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    PubMed  Google Scholar 

  • Pierson LM, Heng-Moss TM, Hunt TE, Reese JC (2010) Categorizing the resistance of soybean genotypes to the soybean aphid (Hemiptera: Aphididae). J Econ Entomol 103:1405–1411

    CAS  PubMed  Google Scholar 

  • Pierson LM, Heng-Moss TM, Hunt TE, Reese JC (2011) Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding. Arthropod-Plant Interact 5:49–58

    Google Scholar 

  • Poschenrieder C, Tolrà R, Barcelò J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    CAS  PubMed  Google Scholar 

  • Prochaska TJ, Pierson LM, Baldin ELL, Hunt TE, Heng-Moss TM, Reese JC (2013) Evolution of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hempitera: Aphididae). J Econ Entomol 106:1036–1044

    CAS  PubMed  Google Scholar 

  • Ragsdale DW, McCornack BP, Venette RC, Potter BD, MacRae IV, Hodgson EW, O’Neal ME, Johnson KD, O’Neil RJ, DiFonzo CD, Hunt TE, Glogoza PA, Cullen EM (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). J Econ Entomol 100(4):1258–1267

    CAS  PubMed  Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of soybean aphid in North America. Annu Rev Entomol 56:375–399

    CAS  PubMed  Google Scholar 

  • Ramm CM, Saathoff A, Donze T, Heng-Moss T, Baxendale F, Twigg P, Baird L, Amundsen K (2013) Expression profiling of four defense-related buffalograss transcripts in response to chinch bug (Hemitpera: Blissidae) feeding. J Econ Entomol 106:2568–2576

    CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutledge CE, O’Neil RJ (2006) Soybean plant stage and population growth of soybean aphid. J Econ Entomol 99:60–66

    PubMed  Google Scholar 

  • Salanoubat M, Lemcke K, Rieger M, Ansorge W et al (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408:820–822

    CAS  PubMed  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    CAS  PubMed  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    CAS  PubMed  Google Scholar 

  • Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stage in Arabidopsis thaliana. Plant Mol Biol 83:265–277

    CAS  PubMed  Google Scholar 

  • Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tobacum is mediated by CYP82E4, a cytochrome p450 monooxygenase. Proc Natl Acad Sci 102:14919–14924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods. Springer, Dordrecht

    Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense to aphid feeding: current status. Entomol Exp Appl 122:1–16

    CAS  Google Scholar 

  • Studham ME, MacIntosh GC (2013) Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. Mol Plant Microbe Interact 26:116–129

    CAS  PubMed  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27:407–415

    CAS  PubMed  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile of analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabata S, Kaneko T, Nakamura Y et al (2000) Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408:823–826

    CAS  PubMed  Google Scholar 

  • Theologis A, Ecker JR, Palm CJ, Federspiel NA et al (2000) Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408:816–820

    PubMed  Google Scholar 

  • Touraine B, Briat JF, Gaymard F (2012) GSH threshold requirement for NO-mediated expression of the Arabidopsis AtFer1 ferritin gene in response to iron. FEBS Lett 586:880–883

    CAS  PubMed  Google Scholar 

  • Venette RC, Ragsdale DW (2004) Assessing the invasion by soybean aphid (Homoptera: Aphididae): where will it end? Ann Entomol Soc Am 97:219–226

    Google Scholar 

  • Voelckel C, Weisser WW, Baldwin IT (2004) An analysis of plant–aphid interactions by different microarray hybridization strategies. Mol Ecol 10:3187–3195

    Google Scholar 

  • Von Groll U, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14:1527–1539

    Google Scholar 

  • Wang YZ, Ba F (1998) Study on optimum control of the soybean aphid. Acta Phys Sin 25:152–155

    Google Scholar 

  • Wang YZ, Ma L, Wang JZ, Ren XZ, Zhu WL (2000) Systematic optimum control of diseases and inset pests in summer soybean. J Ecol 20:502–509

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wiarda SL, Fehr WR, O’Neal ME (2012) Soybean aphid (Hemiptera: Aphididae) development on soybean with Rag1 alone, Rag2 alone, and both genes combined. J Econ Entomol 105(1):252–258

    CAS  PubMed  Google Scholar 

  • Wilson AC, Sternberg L da SL, Hurley KB (2011) Aphids alter host-plant nitrogen isotope fractionation. PNAS 108:10220–10224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS–LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51(5):803–818

    CAS  PubMed  Google Scholar 

  • Wu Z, Schenk-Hamlin D, Zhan W, Ragsdale DW, Heimpel GE (2004) The soybean aphid in China: a historical review. Ann Entomol Soc Am 97:209–218

    Google Scholar 

  • Xu D, Shen Y, Chappell J, Cui M, Nielsen M (2007) Biochemical and molecular characterizations of nicotine demethylase in tobacco. Physiol Plant 129:307–319

    CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–443

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Rachael Sitz, Kyle Koch, Mitchell Stamm, Ruth Miller, and David Orr for technical assistance; Dr. Yuannan Xia for RNA extraction and sequencing; Dr. Jean-Jack Reithoven for data interpretation; and William T. Schapaugh, Jr., for providing the soybean germplasm for these studies. This research was supported in part by the University of Nebraska Agricultural Experiment Station Projects NEB-28-097 and NEB-41-034, the Nebraska Soybeans Board, and the North Central Soybean Research Program. The U.S. Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned.

Ethical standard

This article does not contain any studies with human subjects, vertebrates, or regulated invertebrates performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests, and all research has been carried out with an appropriate ethical framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Heng-Moss.

Additional information

Handling Editor: Joseph Dickens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prochaska, T.J., Donze-Reiner, T., Marchi-Werle, L. et al. Transcriptional responses of tolerant and susceptible soybeans to soybean aphid (Aphis glycines Matsumura) herbivory. Arthropod-Plant Interactions 9, 347–359 (2015). https://doi.org/10.1007/s11829-015-9371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9371-2

Keywords

Navigation