Skip to main content
Log in

Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/MeOH) as the porogen. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and vibrating sample magnetometry (VSM) were used to characterize the ACRPM. The results indicated that amino groups were grafted to the cassava residue magnetic microspheres, and the Fe3O4 nanoparticles were encapsulated in the microspheres. After porogen was added, the particle size of the ACRPM decreased from 16.5 μm to 150 nm with a pore volume of 0.05510 m3/g, and the specific surface area of the ACRPM increased from 3.02 to 12.34 m2/g. The ACRPM were superparamagnetic, and the saturation magnetization was 9.8 emu/g. The maximum adsorption capacity of Pb(II) on the ACRPM was 390 mg/g. The ACRPM exhibited a large specific surface area and provided many adsorption sites for metal ion adsorption, which favored a high adsorption capacity. Additionally, the Pb(II) adsorption process was fitted to pseudo-second-order kinetic and Langmuir isothermal adsorption models. This suggests that the Pb(II) adsorption process was dominated by a chemical reaction process and that chemisorption was the rate-controlling step during the Pb(II) removal process. In addition, the adsorbent exhibited good stability after six consecutive reuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Da’na, Micropor. Mesopor. Mater., 247, 145 (2017).

    Article  Google Scholar 

  2. G. Tepanosyan, L. Sahakyan, O. Belyaeva, N. Maghakyan and A. Saghatelyan, Chemosphere, 184, 1230 (2017).

    Article  CAS  Google Scholar 

  3. J. Ma, Y. Liu, O. Ali, Y. Wei, S. Zhang, Y. Zhang, T. Cai, C. Liu and S. Luo, J. Hazard. Mater., 344, 1034 (2018).

    Article  CAS  Google Scholar 

  4. T. A. Kurniawan, G.Y. Chan, W. H. Lo and S. Babel, Sci. Total Environ., 366, 409 (2006).

    Article  CAS  Google Scholar 

  5. Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E.K. Wujcik and Z. Guo, Poly, 128, 12 (2017).

    Article  Google Scholar 

  6. J. Huang, Y. Cao, Q. Shao, X. Peng and Z. Guo, Ind. Eng. Chem. Res., 56, 10689 (2017).

    Article  CAS  Google Scholar 

  7. U.K. Garg, M. P. Kaur, V. K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007).

    Article  CAS  Google Scholar 

  8. M. I. Shariful, T. Sepehr, M. Mehrali, B.C. Ang and M.A. Amalina, J. Appl. Polym. Sci., 135, 45851 (2018).

    Article  Google Scholar 

  9. Z. Xu, G. Gao, B. Pan, W. Zhang and L. Lv, Water Res., 87, 378 (2015).

    Article  CAS  Google Scholar 

  10. I. Petrinic, J. Korenak, D. Povodnik and C. Hélix-Nielsen, J. Clean. Prod., 101, 292 (2015).

    Article  CAS  Google Scholar 

  11. J. Altmann, A. S. Ruhl, F. Zietzschmann and M. Jekel, Water Res., 55, 185 (2014).

    Article  CAS  Google Scholar 

  12. M.A. Shaker and H. M. albishri, Chemosphere, 111, 587 (2014).

    Article  CAS  Google Scholar 

  13. N. Li, F. Fu, J. Lu, Z. Ding, B. Tang and J. Pang, Environ. Pollut., 220, 1376 (2017).

    Article  CAS  Google Scholar 

  14. L. Lv, N. Chen, C. Feng, J. Zhang and M. Li, RSC Adv., 7, 27992 (2017).

    Article  CAS  Google Scholar 

  15. H.-C. Dang, X. Yuan, Q. Xiao, W.-X. Xiao, Y.-K. Luo, X.-L. Wang, F. Song and Y.-Z. Wang, J. Environ. Chem. Eng., 5, 4505 (2017).

    Article  CAS  Google Scholar 

  16. N. M. Noor, R. Othman, N.M. Mubarak and E. C. Abdullah, J. Taiwan Inst. Chem. Eng., 78, 168 (2017).

    Article  CAS  Google Scholar 

  17. W. Park, A.C. Gordon, S. Cho, X. Huang, K.R. Harris, A.C. Larson and D.-H. Kim, ACS Appl. Mater. Inter., 9, 13819 (2017).

    Article  CAS  Google Scholar 

  18. N. Rodkate and M. Rutnakornpituk, Carbohyd. Polym., 151, 251 (2016).

    Article  CAS  Google Scholar 

  19. X. Zhang, N. Zhang, C. Du, P. Guan, X. Gao, C. Wang, Y. Du, S. Ding and X. Hu, Chem. Eng. J., 317, 988 (2017).

    Article  CAS  Google Scholar 

  20. Z. Hu, Q. Shao, M. G. Moloney, X. Xu, D. Zhang, J. Li, C. Zhang and Y. Huang, Macromolecules, 50, 1422 (2017).

    Article  CAS  Google Scholar 

  21. W. Zhu, W. Ma, C. Li, J. Pan and X. Dai, Chem. Eng. J., 276, 249 (2015).

    Article  CAS  Google Scholar 

  22. J. Liu, H.-T. Wu, J.-f. Lu, X.-y. Wen, J. Kan and C.-h. Jin, Chem. Eng. J., 262, 803 (2015).

    Article  CAS  Google Scholar 

  23. J. Xie, G. Zhong, C. Cai, C. Chen and X. Chen, Talanta, 169, 98 (2017).

    Article  CAS  Google Scholar 

  24. J. Huang, P. Su, L. Zhou and Y. Yang, Colloids Surf., A, 490, 241 (2016).

    Article  CAS  Google Scholar 

  25. P. Pingmuanglek, N. Jakrawatana and S. H. Gheewala, J. Clean. Prod., 162, 1075 (2017).

    Article  Google Scholar 

  26. H. Jiang, Y. Qin, S. I. Gadow and Y.-Y. Li, Int. J. Hydrogen Energy, 42, 2868 (2017).

    Article  CAS  Google Scholar 

  27. H. Lu, C. Lv, M. Zhang, S. Liu, J. Liu and F. Lian, Energy Convers. Manage., 132, 251 (2017).

    Article  CAS  Google Scholar 

  28. J. Cheng, J. Zhang, R. Lin, J. Liu, L. Zhang and K. Cen, Bioresour. Technol., 228, 348 (2017).

    Article  CAS  Google Scholar 

  29. X. Xie, H. Xiong, Y. Zhang, Z. Tong, A. Liao and Z. Qin, J. Environ. Chem. Eng., 5, 2800 (2017).

    Article  CAS  Google Scholar 

  30. A.R. Garcia, C. Lacko, C. Snyder, A. C. Bohórquez, C. E. Schmidt and C. Rinaldi, Colloids Surf. Physicochem. Eng. Aspects, 529, 119 (2017).

    Article  CAS  Google Scholar 

  31. Z. Guo, J. Fan, J. Zhang, Y. Kang, H. Liu, L. Jiang and C. Zhang, J. Taiwan Inst. Chem. Eng., 58, 290 (2016).

    Article  CAS  Google Scholar 

  32. A. Hajlane, H. Kaddami and R. Joffe, Ind. Crop. Prod., 100, 41 (2017).

    Article  CAS  Google Scholar 

  33. D. Morillo Martín, M. Faccini, M.A. García and D. Amantia, J. Environ. Chem. Eng., 6, 236 (2018).

    Article  Google Scholar 

  34. Q. Lin, J. Pan, Q. Lin and Q. Liu, J. Hazard. Mater., 263, 517 (2013).

    Article  CAS  Google Scholar 

  35. L. Lu, J. Li, D. H. L. Ng, P. Yang, P. Song and M. Zuo, J. Ind. Eng. Chem., 46, 315 (2017).

    Article  CAS  Google Scholar 

  36. W. Wang, T. Liang, H. Bai, W. Dong and X. Liu, Carbohydr. Polym., 179, 297 (2018).

    Article  CAS  Google Scholar 

  37. T. Zhai, Q. Zheng, Z. Cai, H. Xia and S. Gong, Carbohydr. Polym., 148, 300 (2016).

    Article  CAS  Google Scholar 

  38. L. Wang and D.E. Giammar, J. Colloid Interface Sci., 448, 331 (2015).

    Article  CAS  Google Scholar 

  39. X. Liu, M. Liu and L. Zhang, J. Colloid Interface Sci., 511, 135 (2018).

    Article  CAS  Google Scholar 

  40. D. Kolodynska, J. Krukowska-Bak, J. Kazmierczak-Razna and R. Pietrzak, Micropor. Mesopor. Mater., 244, 127 (2017).

    Article  CAS  Google Scholar 

  41. N. A. Fakhre and B.M. Ibrahim, J. Hazard. Mater., 343, 324 (2018).

    Article  CAS  Google Scholar 

  42. X. Ma, X. Liu, D. P. Anderson and P.R. Chang, Food Chem., 181, 133 (2015).

    Article  CAS  Google Scholar 

  43. Q. Liu, F. Li, H. Lu, M. Li, J. Liu, S. Zhang, Q. Sun and L. Xiong, Food Chem., 242, 256 (2018).

    Article  CAS  Google Scholar 

  44. N. Yin, K. Wang, Y. A. Xia and Z. Li, Desalination, 430, 120 (2018).

    Article  CAS  Google Scholar 

  45. T. Liu, X. Han, Y. Wang, L. Yan, B. Du, Q. Wei and D. Wei, J. Colloid Interface Sci., 508, 405 (2017).

    Article  CAS  Google Scholar 

  46. Q. Yuan, Y. Chi, N. Yu, Y. Zhao, W. Yan, X. Li and B. Dong, Mater. Res. Bull., 49, 279 (2014).

    Article  CAS  Google Scholar 

  47. H. L. Fan, S. F. Zhou, W. Z. Jiao, G. S. Qi and Y. Z. Liu, Carbohyd. Polym., 174, 1192 (2017).

    Article  CAS  Google Scholar 

  48. Q. Hu, Z. Xiao, X. Xiong, G. Zhou and X. Guan, J. Environ. Sci., 27, 207 (2015).

    Article  CAS  Google Scholar 

  49. J.N. Putro, S. P. Santoso, S. Ismadji and Y.-H. Ju, Micropor. Mesopor. Mater., 246, 166 (2017).

    Article  CAS  Google Scholar 

  50. A.A. Yakout, R. H. El-Sokkary, M. A. Shreadah and O. G. Abdel Hamid, Carbohyd. Polym., 172, 20 (2017).

    Article  CAS  Google Scholar 

  51. T.W. Cheng, M. L. Lee, M. S. Ko, T. H. Ueng and S. F. Yang, Appl. Clay Sci., 56, 90 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youquan Zhang, Zuzeng Qin or Zhanhu Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Huang, J., Zhang, Y. et al. Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater. Korean J. Chem. Eng. 36, 226–235 (2019). https://doi.org/10.1007/s11814-018-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0190-x

Keywords

Navigation