Skip to main content
Log in

Modeling and optimization of cutinase production by recombinant Escherichia coli based on statistical experimental designs

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Statistics-based experiment designs were used to optimize the culture medium (glucose, yeast extract, IPTG, tween-60, and CaCl2) for cutinase production by recombinant Escherichia coli. A 25-1 fractional factorial design augmented with center points revealed that glucose, yeast extract, and IPTG were the most significant factors, whereas the other factors were not important within the levels tested. The method of steepest ascent was used to approach the proximity of optimum, followed by a central composite design to develop a response surface for culture condition optimization. The optimum culture medium for cutinase production was found to be: glucose 33. 92 g/L, yeast extract 30.92 g/L, and IPTG 0.76 g/L. A cutinase production of 145.27±1.5 U/mL, which was in agreement with the prediction, was observed in triplicate verification experiments. The results obtained here verified the effectiveness of the applied methodology and may be helpful for cutinase production on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Agrawal, V.A. Nierstrasz and M. M. C.G. Warmoeskerken, Enzyme Microbial. Technol., 42, 473 (2008).

    Article  CAS  Google Scholar 

  2. C.M. L. Carvalho, M. R. Aires-Barros and J.M. S. Cabral, Biotechnol. Bioeng., 66, 17 (1999).

    Article  CAS  Google Scholar 

  3. C. M. L. Carvalho, M. L.M. Serralheiro, J. M. S. Cabral and M.R. Aires-Barros, Enzyme Microbial. Technol., 21, 117 (1997).

    Article  CAS  Google Scholar 

  4. J. Chen, Q. Wang, Z. Z. Hua and G. C. Du, Enzyme Microbial. Technol., 40, 1651 (2007).

    Article  CAS  Google Scholar 

  5. G. C. Du, S. L. Zhang, Z. Z. Hua, Y. Zhu and J. Chen, Biotechnol. J., 2, 365 (2007).

    Article  CAS  Google Scholar 

  6. C. Silva, R. Araújo, M. Casal, G.M. Gübitz and A. Cavaco-Paulo, Enzyme Microbial. Technol., 40, 1678 (2007).

    Article  CAS  Google Scholar 

  7. W. F. Fett, H. C. Gerard, R. A. Moreau, S. F. Osman and L. E. Jones, Curr. Microbiol., 25, 165 (1992).

    Article  CAS  Google Scholar 

  8. C.R. C. Calado, S.M. S. Monteiro, J.M. S Cabral and L. P. Fonseca, J. Biosci. Bioeng., 93, 354 (2002).

    CAS  Google Scholar 

  9. C. R. C. Calado, M. A. Taipa, J.M. S. Cabral and L. P. Fonseca, Enzyme Microbial. Technol., 31, 161 (2002).

    Article  CAS  Google Scholar 

  10. B. S. Ferreira, C. R. C. Calado, V. F. Keulen, L.P. Fonseca, J.M. S. Cabral and M. M.R. Fonseca, Appl. Microbiol. Biotechnol., 61, 69 (2003).

    CAS  Google Scholar 

  11. T. F. Pio and G.A. Macedo, Enzyme Microbial. Technol., 41, 613 (2007).

    Article  CAS  Google Scholar 

  12. W. F. Fett, H. C. Gerard, R. A. Moreau, S. F. Osman and L. E. Jones, Appl. Environ. Microbiol., 58, 2123 (1992).

    CAS  Google Scholar 

  13. C.R. C. Calado, M. Mannesse, M. Egmond and J. M. S. Cabral, Biotechnol. Bioeng., 78, 692 (2002).

    Article  CAS  Google Scholar 

  14. C.R. C. Calado, C. Almeida, J.M. S. Cabral and L. P. Fonseca, J. Biosci. Bioeng., 96, 141 (2003).

    CAS  Google Scholar 

  15. W. F. Fett, C. Wijey and R.A. Moreau, J. Appl. Microbiol., 86, 561 (1999).

    Article  CAS  Google Scholar 

  16. F. J. Rispoli and V. Shah, J. Ind. Microbiol. Biotechnol., 34, 349 (2007).

    Article  CAS  Google Scholar 

  17. M. T. Cunha, M. J. L. Costa, C. R. C. Calado, L. P. Fonseca, M. R. Aires-Barros and J.M. S. Cabral, J. Biotechnol., 100, 55 (2003).

    Article  CAS  Google Scholar 

  18. C.R.C. Calado, B. S. Ferreira, D. M. M. R. Fonseca, J. M. S. Cabral and L. P. Fonseca, J. Biotechnol., 109, 147 (2004).

    Article  CAS  Google Scholar 

  19. C. Kepka, E. Collet, J. Persson, Å. Ståhl, T. Lagerstedt, F. Tjerneld and A. Veide, J. Biotechnol., 103, 165 (2003).

    Article  CAS  Google Scholar 

  20. W. F. Fett, C. Wijey, R. A. Moreau and S. F. Osman, Lett. Appl. Microbiol., 31, 25 (2000).

    Article  CAS  Google Scholar 

  21. G.Q. He, G.H. Huo, L. M. Liu, Y. Zhu, G.C. Du and J. Chen, Biotechnol. Biopro. E., 14, 46 (2009).

    Article  CAS  Google Scholar 

  22. S. Chen, X. Tong, R.W. Woodard, G. C. Du, J. Wu and J. Chen, J. Biol. Chem., 283, 25854 (2008).

    Article  CAS  Google Scholar 

  23. T. F. Pio and G.A. Macedo, J. Ind. Microbiol. Biotechnol., 35, 59 (2008).

    Article  CAS  Google Scholar 

  24. E. Mübeccel and S. F. Mutlu, Bioresour. Technol., 73, 251 (2000).

    Article  Google Scholar 

  25. X. Yu and A. K. Watson, Appl. Microbiol. Biotechnol., 47, 301 (1997).

    Article  CAS  Google Scholar 

  26. L. Liu, J. Sun, D.X. Zhang, G.C. Du, J. Chen and W.B. Xu, Enzyme Microbial. Technol., 44, 24 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Liu, L., Wu, J. et al. Modeling and optimization of cutinase production by recombinant Escherichia coli based on statistical experimental designs. Korean J. Chem. Eng. 27, 1233–1238 (2010). https://doi.org/10.1007/s11814-010-0195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0195-6

Key words

Navigation