Skip to main content
Log in

Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Thin film solar cells have been proved the next generation photovoltaic devices due to their low cost, less material consumption and easy mass production. Among them, micro-crystalline Si and Ge based thin film solar cells have advantages of high efficiency and ultrathin absorber layers. Yet individual junction devices are limited in photoelectric conversion efficiency because of the restricted solar spectrum range for its specific absorber. In this work, we designed and simulated a multi-junction solar cell with its four sub-cells selectively absorbing the full solar spectrum including the ultraviolet, green, red as well as near infrared range, respectively. By tuning the Ge content, the record efficiency of 24.80% has been realized with the typical quadruple junction structure of a-Si:H/a-Si0.9Ge0.1:H/μc-Si:H/μc-Si0.5Ge0.5:H. To further reduce the material cost, thickness dependent device performances have been conducted. It can be found that the design of total thickness of 4 mm is the optimal device design in balancing the thickness and the PCE. While the design of ultrathin quadruple junction device with total thickness of 2 mm is the optimized device design regarding cost and long-term stability with a little bit more reduction in PCE. These results indicated that our solar cells combine the advantages of low cost and high stability. Our work may provide a general guidance rule of utilizing the full solar spectrum for developing high efficiency and ultrathin multi-junction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382

    Article  CAS  Google Scholar 

  2. Shu F, Wang M, Pang J, Yu P. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Frontiers of Chemical Science and Engineering, 2019, 13(2): 393–399

    Article  CAS  Google Scholar 

  3. Zhang Y, Xiao J, Lv Q, Wang S. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Frontiers of Chemical Science and Engineering, 2018, 12(3): 494–508

    Article  CAS  Google Scholar 

  4. Zheng H, Picard C, Ravaine S. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths. Frontiers of Chemical Science and Engineering, 2018, 12(2): 247–251

    Article  CAS  Google Scholar 

  5. Uddin M H, Ozalp N, Heylen J, Ophoff C. A new approach for fuel injection into a solar receiver/ reactor: Numerical and experimental investigation. Frontiers of Chemical Science and Engineering, 2018, 12(4): 683–696

    Article  Google Scholar 

  6. Isabella O, Vismara R, Linssen D N P, Wang K X, Fan S, Zeman M. Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells. Solar Energy, 2018, 162: 344–356

    Article  CAS  Google Scholar 

  7. Zhu H, Niu X, Wan M, Mai Y. A study of ZnO:Al thin films reactively sputtered under the control of target voltage for application in Cu (In, Ga) Se2 thin film solar cells. Vacuum, 2019, 161: 297–305

    Article  CAS  Google Scholar 

  8. Sun L, Shen H, Huang H, Raza A, Zhao Q, Yang J. Influence of Ge layer location on performance of flexible CZTSSe thin film solar cell. Vacuum, 2019, 165: 186–192

    Article  CAS  Google Scholar 

  9. Nien Y H, Chen H H, Hsu H H, Kuo P Y, Chou J C, Lai C H, Hu G M, Kuo C H, Ko C C. Enhanced photovoltaic conversion efficiency in dye-sensitized solar cells based on photoanode consisting of TiO2/GO/Ag nanofibers. Vacuum, 2019, 167: 47–53

    Article  CAS  Google Scholar 

  10. Xu J, Hu Z, Zhang K, Huang L, Zhang J, Zhu Y. Enhancement in photocurrent through efficient geometrical light trapping in organic photovoltaics. Energy Technology (Weinheim), 2016, 4(2): 314–318

    Article  CAS  Google Scholar 

  11. Jia X Y, Hu Z Y, Luan S Z, Xu J, Zhang H C, Zhang J, Zhu Y J. Evolution of film morphology in polymer solar cells based on rough electrode substrates. Thin Solid Films, 2016, 616: 690–697

    Article  CAS  Google Scholar 

  12. Matsui T, Sai H, Bidiville A, Hsu H J, Matsubara K. Progress and limitations of thin-film silicon solar cells. Solar Energy, 2018, 170: 486–498

    Article  CAS  Google Scholar 

  13. Fang J, Ren Q, Wang F, Wei C, Yan B, Zhao Y, Zhang X. Amorphous silicon/crystal silicon heterojunction double-junction tandem solar cell with open-circuit voltage above 1.5 V and high short-circuit current density. Solar Energy Materials and Solar Cells, 2018, 185: 307–311

    Article  CAS  Google Scholar 

  14. Trompoukis C, Abass A, Schüttauf J W, Bosserez T, Rongé J, Lauwaert J, Martens J A, Baets R. Porous multi-junction thin-film silicon solar cells for scalable solar water splitting. Solar Energy Materials and Solar Cells, 2018, 182: 196–203

    Article  CAS  Google Scholar 

  15. Wang X, Guo H, Ma C, Jia X, Li Y, Yuan N, Ding J. Enhancement in the efficiency of Sb2Se3 solar cells using a TiO2-modified SnO2 buffer layer. Vacuum, 2019, 166: 201–205

    Article  CAS  Google Scholar 

  16. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407): 1094–1098

    Article  CAS  PubMed  Google Scholar 

  17. Che X, Li Y, Qu Y, Forrest S R. High fabrication yield organic tandem photovoltaics combining vacuum-and solution-processed subcells with 15% efficiency. Nature Energy, 2018, 3(5): 422–427

    Article  CAS  Google Scholar 

  18. Sahli F, Werner J, Kamino B A, Brauninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17(9): 820–826

    Article  CAS  PubMed  Google Scholar 

  19. Ramírez Quiroz C O, Spyropoulos G D, Salvador M, Roch L M, Berlinghof M, Darío Perea J, Forberich K, Dion-Bertrand L I, Schrenker N J, Classen A, et al. Interface molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor. Advanced Functional Materials, 2019, 29(40): 1901476

    Article  Google Scholar 

  20. Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R E I, Mai Y. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Communications, 2019, 10(1): 125

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K, et al. Quasiepitaxy strategy for efficient full—inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720

    Article  Google Scholar 

  22. Cashmore J S, Apolloni M, Braga A, Caglar O, Cervetto V, Fenner Y, Goldbach-Aschemann S, Goury C, Hötzel J E, Iwahashi T, et al. Record 12.34% stabilized conversion efficiency in a large area thinfilm silicon tandem (MICROMORPH™) module. Progress in Photovoltaics: Research and Applications, 2015, 23(11): 1441–1447

    Article  CAS  Google Scholar 

  23. Zhang X, Liu B, Bai L, Wang S, Huang Q, Ni J, Wei C, Zhang D, Sun J, Chen X. Advanced functional materials: Intrinsic and doped silicon oxide. MRS Online Proceedings Library Archive, 2015, 1771: 3–8

    Article  Google Scholar 

  24. Liu B, Bai L, Li T, Wei C, Li B, Huang Q, Zhang D, Wang G, Zhao Y, Zhang X. High efficiency and high open-circuit voltage quadruple-junction silicon thin film solar cells for future electronic applications. Energy & Environmental Science, 2017, 10(5): 1134–1141

    Article  CAS  Google Scholar 

  25. Si F T, Kim D Y, Santbergen R, Tan H R, van Swaaij R A C M M, Smets A H M, Isabella O, Zeman M. Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage. Applied Physics Letters, 2014, 105(6): 063902

    Article  Google Scholar 

  26. Urbain F, Smirnov V, Becker J P, Lambertz A, Rau U, Finger F. Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2016, 145: 142–147

    Article  CAS  Google Scholar 

  27. Cao Y, Zhou J, Wang Y, Ni J, Zhang J. Band gap grading in microcrystalline silicon germanium thin film solar cells. Journal of Alloys and Compounds, 2015, 632: 456–459

    Article  CAS  Google Scholar 

  28. Cao Y, Zhang J, Li C, Li T, Huang Z, Ni J, Hu Z, Geng X, Zhao Y. Hydrogenated microcrystalline silicon germanium as bottom subcell absorber for triple junction solar cell. Solar Energy Materials and Solar Cells, 2013, 114: 161–164

    Article  CAS  Google Scholar 

  29. Cao Y, Liu Y, Zhou J, Wang Y, Ni J, Zhang J. Non-uniform distribution in μc-Si1 - xGex:H and its influence on thin film and device performance. Solar Energy Materials and Solar Cells, 2016, 151: 1–6

    Article  CAS  Google Scholar 

  30. Liu Y, Sun Y, Rockett A. A new simulation software of solar cells—wxAMPS. Solar Energy Materials and Solar Cells, 2012, 98: 124–128

    Article  CAS  Google Scholar 

  31. Yan L, Bai Y, Yang B, Chen N, Tan Z, Hayat T, Alsaedi A. Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band. Current Applied Physics, 2018, 18(4): 484–490

    Article  Google Scholar 

  32. Yan B, Yue G, Yang J, Guha S. Correlation of current mismatch and fill factor in amorphous and nanocrystalline silicon based high efficiency multi-junction solar cells. In 2008 33rd IEEE Photovoltaic Specialists Conference. 2008. San Diego, CA, USA, 1–6

    Google Scholar 

  33. Bills B, Liao X, Galipeau D W, Fan Q H. Effect of tunnel recombination junction on crossover between the dark and illuminated current-voltage curves of tandem solar cells. IEEE Transactions on Electron Devices, 2012, 59(9): 2327–2330

    Article  CAS  Google Scholar 

  34. Matsui T, Kondo M, Ogata K, Ozawa T, Isomura M. Influence of alloy composition on carrier transport and solar cell properties of hydrogenated microcrystalline silicon-germanium thin films. Applied Physics Letters, 2006, 89(14): 142115

    Article  Google Scholar 

  35. Yunaz I A, Yamada A, Konagai M. Theoretical analysis of amorphous silicon alloy based triple junction solar cells. Japanese Journal of Applied Physics, 2007, 46(47): L1152–L1154

    Article  CAS  Google Scholar 

  36. Schicho S, Hrunski D, van Aubel R, Gordijn A. High potential of thin (<1 μm) a-Si:H/μc-Si:H tandem solar cells. Progress in Photovoltaics: Research and Applications, 2010, 18(2): 83–89

    Article  CAS  Google Scholar 

  37. Crandall R S. Defect relaxation in amorphous silicon: Stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect. Physical Review B: Condensed Matter, 1991, 43(5): 4057–4070

    Article  CAS  Google Scholar 

  38. Chen J, Zuo L, Zhang Y, Lian X, Fu W, Yan J, Li J, Wu G, Li C Z, Chen H. High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Advanced Energy Materials, 2018, 8(23): 1800438

    Article  Google Scholar 

  39. Yang B, Xue D J, Leng M, Zhong J, Wang L, Song H, Zhou Y, Tang J. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S(1-x)Se(x))3 film: Molecular precursor identification, film fabrication and band gap tuning. Scientific Reports, 2015, 5(1): 10978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Z, Yu Z, Wei H, Xiao X, Ni Z, Chen B, Deng Y, Habisreutinger S N, Chen X, Wang K, et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nature Communications, 2019, 10(1): 4498

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. A. Rockett and Dr. Yiming Liu from UIUC and Prof. Fonash of PSU for providing the wxAMPS program. This research was carried out with the support from the National Natural Science Foundation of China (Grant No. 51772049), the Jilin Scientific and Technological Development Program, China (Grant No. 20170520159JH) and the ‘Thirteenth Five-Year’ Scientific and Technological Research Project of the Education Department of Jilin Province, China (Grant No. JJKH20190705KJ), the project of Jilin Development and Reform Commission (Grant No. 2019C042). The authors also show their gratitude to the National Natural Science Foundation of China (Grant No. 51802116) and the Natural Science Foundation of Shandong Province (No. ZR2019BE M040). Jinbo Pang acknowledges the National Key Research and Development Program of China (Grant No. 2017YFE0102700) from the Ministry of Science and Technology (MOST) of China and the Key Research and Development program of Shandong Province (Major Innovation Project of Science and Technology of Shandong Province) (No. 2018YFJH0503) and the University of Jinan for the Scientific Research Starting Funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhou or Jinbo Pang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhu, X., Tong, X. et al. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Front. Chem. Sci. Eng. 14, 997–1005 (2020). https://doi.org/10.1007/s11705-019-1906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1906-0

Keywords

Navigation