Skip to main content
Log in

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

We report here a water-soluble metal cation sensor system based on the as-prepared or reduced form of an expanded porphyrin, texaphyrin. Upon metal complexation, a change in the redox state of the ligand occurs that is accompanied by a color change from red to green. Although long employed for synthesis in organic media, we have now found that this complexation-driven redox behavior may be used to achieve the naked eye detectable colorimetric sensing of several number of less-common metal ions in aqueous media. Exposure to In(III), Hg(II), Cd(II), Mn(II), Bi(III), Co(II), and Pb(II) cations leads to a colorimetric response within 10 min. This process is selective for Hg(II) under conditions of competitive analysis. Furthermore, among the subset of response-producing cations, In(III) proved unique in giving rise to a ratiometric change in the ligand-based fluorescence features, including an overall increase in intensity. The cation selectivity observed in aqueous media stands in contrast to what is seen in organic solvents, where a wide range of texaphyrin metal complexes may be prepared. The formation of metal cation complexes under the present aqueous conditions was confirmed by reversed phase high-performance liquid chromatography, ultra-violet-visible absorption and fluorescence spectroscopies, and high-resolution mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J, James T D. Fluorescent chemosensors: The past, present, and future. Chemical Society Review, 2017, 46(23): 7105–7123

    CAS  Google Scholar 

  2. Li Z, Askim J R, Suslick K S. The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chemical Reviews, 2019, 119(1): 231–292

    CAS  PubMed  Google Scholar 

  3. Kaur B, Kaur N, Kumar S. Colorimetric metal ion sensors—a comprehensive review of the years 2011–2016. Coordination Chemistry Reviews, 2018, 358: 13–69

    CAS  Google Scholar 

  4. Piriya A, Joseph P, Daniel K, Lakshmanan S, Kinoshita T, Muthusamy S. Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering C, 2017, 78: 1231–1245

    Google Scholar 

  5. Long F, Zhu A, Shi H, Wang H, Liu J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports, 2013, 3(1): 1–7

    Google Scholar 

  6. Zhou W, Saran R, Liu J. Metal sensing by DNA. Chemical Reviews, 2017, 117(12): 8272–8325

    CAS  PubMed  Google Scholar 

  7. Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. Journal of the American Chemical Society, 2007, 129(18): 5910–5918

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Azmi N A, Ahmad S H, Low S C. Detection of mercury ions in water using a membrane-based colorimetric sensor. RSC Advances, 2018, 8(1): 251–261

    CAS  Google Scholar 

  9. Chang J, Zhou G, Gao X, Mao S, Cui S, Ocola L E, Yuan C, Chen J. Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer. Sensing and Bio-Sensing Research, 2015, 5: 97–104

    Google Scholar 

  10. Karthikeyan K, Sujatha L. Fluorometric sensor for mercury ion detection in a fluidic MEMS device. IEEE Sensors Journal, 2018, 18(13): 5225–5231

    CAS  Google Scholar 

  11. Maher S, Bastani B, Smith B, Jjunju Z, Taylor S, Young I S. Portable fluorescent sensing array for monitoring heavy metals in water. IEEE Sensors, 2016: 1–3

  12. He W, Luo L, Liu Q, Chen Z. Colorimetric sensor array for discrimination of heavy metal ions in aqueous solution based on three kinds of thiols as receptors. Analytical Chemistry, 2018, 90(7): 4770–4775

    CAS  PubMed  Google Scholar 

  13. Niu L, Li H, Feng L, Guan Y, Chen Y, Duan C, Wu L, Guan Y, Tung C, Yang Q. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions. Analytica Chimica Acta, 2013, 775: 93–99

    CAS  PubMed  Google Scholar 

  14. Singh R K, Mishra S, Jena S, Panigrahi B, Das B, Jayabalan R, Parhi P K, Mandal D. Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: The development of a nanohybrid bioimaging probe. Chemical Communications, 2018, 54(32): 3981–3984

    CAS  PubMed  Google Scholar 

  15. Denis M, Pancholi J, Jobe K, Watkinson M, Goldup S M. Chelating rotaxane ligands as fluorescent sensors for metal ions. Angewandte Chemie International Edition, 2018, 57(19): 5310–5314

    CAS  PubMed  Google Scholar 

  16. Hong W, Li W, Hu X, Zhao B, Zhang F, Zhang D. Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. Journal of Materials Chemistry, 2011, 21(43): 17193–17201

    CAS  Google Scholar 

  17. Moghaddam M R, Carrara S, Hogan C F. Multi-colour bipolar electrochemiluminescence for heavy metal ion detection. Chemical Communications, 2018, 55(8): 3–6

    Google Scholar 

  18. Boening D W. Ecological effects, transport, and fate of Mercury: A general review. Chemosphere, 2000, 40(12): 1335–1351

    CAS  PubMed  Google Scholar 

  19. Zheng W, Aschner M, Ghersi-egea J. Brain barrier systems: A new frontier in metal neurotoxicological research. Toxicology and Applied Pharmacology, 2003, 192(1): 1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Selid P D, Xu H, Collins E M, Face-Collins M S, Zhao J X. Sensing mercury for biomedical and environmental monitoring. Sensors (Basel), 2009, 9(7): 5446–5459

    CAS  Google Scholar 

  21. Hu J, Wu T, Zhang G, Liu S. Highly selective fluorescence sensing of mercury ions over a broad concentration range based on mixed polymeric micelles. Macromolecules, 2012, 45(9): 3939–3947

    CAS  Google Scholar 

  22. Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion. Chemical Reviews, 2008, 108(9): 3443–3480

    CAS  PubMed  Google Scholar 

  23. Zhang K, Wu Y, Wang W, Li B, Zhang Y, Zuo T. Resources, conservation and recycling indium from waste LCDs: A review. Resources, Conservation and Recycling, 2015, 104: 276–290

    CAS  Google Scholar 

  24. Thakur M L, Welch M J, Joist J H, Coleman R E. Indium-III labeled platelets: Studies on preparation and evaluation of in vitro and in vivo functions. Thrombosis Research, 1976, 9(4): 345–357

    CAS  PubMed  Google Scholar 

  25. Thakur M, Lavender J P, Arnot R, Silvester D J, Segal A W. Indium-III-labeled autologous leukocytes in man. Journal of Nuclear Medicine, 1977, 18(10): 1014–1021

    CAS  PubMed  Google Scholar 

  26. Zolata H, Abbasi F, Afarideh H. Synthesis, characterization and theranostic evaluation of indium-III labeled multifunctional super-paramagnetic iron oxide nanoparticles. Nuclear Medicine and Biology, 2015, 42(2): 164–170

    CAS  PubMed  Google Scholar 

  27. Alfantazi A M, Moskalyk R R. Processing of indium: A review. Materials & Design, 2003, 16(8): 687–694

    CAS  Google Scholar 

  28. Lim C H, Han J, Cho H, Kang M. Studies on the toxicity and distribution of indium compounds according to particle size in sprague-dawley rats. Toxicological Research, 2014, 30(1): 55–63

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka A, Hirata M, Kiyohara Y, Nakano M, Omae K, Shiratani M, Koga K. Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 2010, 518(11): 2934–2936

    CAS  Google Scholar 

  30. Mehta P K, Hwang G W, Park J, Lee K. Highly sensitive ratiometric fluorescent detection of indium(III) using fluorescent probe based on phosphoserine as a receptor. Analytical Chemistry, 2018, 90(19): 11256–11264

    CAS  PubMed  Google Scholar 

  31. Wu Y C, Li H, Yang H. A sensitive and highly selective fluorescent sensor for In3+. Organic & Biomolecular Chemistry, 2010, 8(15): 3394–3397

    CAS  Google Scholar 

  32. Kim S K, Kim S H, Kim H J, Lee S H, Lee S W, Ko J, Bartsch R A, Kim J S. Indium(III)-induced fluorescent excimer formation and extinction in calix[4]arene—fluoroionophores. Inorganic Chemistry, 2005, 44(22): 7866–7875

    CAS  PubMed  Google Scholar 

  33. Ding Y, Zhu W, Xie Y. Development of ion chemosensors based on porphyrin analogues. Chemical Reviews, 2017, 117(4): 2203–2256

    CAS  PubMed  Google Scholar 

  34. Sessler J L, Mody T D, Hemmi G W, Lynch V. Synthesis and structural characterization of lanthanide(III) texaphyrins. Inorganic Chemistry, 1993, 32(14): 3175–3187

    CAS  Google Scholar 

  35. Preihs C, Arambula J F, Lynch V M, Siddik H, Sessler J L. Bismuthand lead-texaphyrin complexes: Towards potential α-core emitters for radiotherapy. Chemical Communications, 2010, 46(42): 7900–7902

    CAS  PubMed  Google Scholar 

  36. Thiabaud G, Radchenko V, Wilson J J, John K D, Birnbaum E R, Sessler J L. Rapid insertion of bismuth radioactive isotopes into texaphyrin in aqueous media. Journal of Porphyrins and Phthalocyanines, 2017, 21(12): 882–886

    CAS  Google Scholar 

  37. Maiya B G, Harriman A, Sessler J L, Hemmi G, Murai T, Mallouk T E. Ground- and excited-state spectral and redox properties of cadmium(II) texaphyrin. Journal of Physical Chemistry, 1989, 93(24): 8111–8115

    CAS  Google Scholar 

  38. Sessler J L, Murai T, Lynch V, Cyr M. An “expanded porphyrin”: The synthesis and structure of a new aromatic pentadentate ligand of chemistry. Journal of the American Chemical Society, 1988, 110(16): 5586–5588

    CAS  Google Scholar 

  39. Sessler J L, Dow W C, Connor D O, Harriman A, Hemmi G, Mody T D, Miller R A, Qing F, Springs S, Woodburn K, et al. Biomedical applications of lanthanide(III) texaphyrins lutetium(III) texaphyrins as potential photodynamic therapy photosensitizers. Journal of Alloys and Compounds, 1997, 249(1–2): 146–152

    CAS  Google Scholar 

  40. Magda D, Miller R A. Motexafin gadolinium: A novel redox active drug for cancer therapy. Seminars in Cancer Biology, 2006, 16(6): 466–476

    CAS  PubMed  Google Scholar 

  41. Hannah S, Lynch V, Guldi D M, Gerasimchuk N, Macdonald C L B, Magda D, Sessler J L. Late first-row transition-metal complexes of texaphyrin. Journal of the American Chemical Society, 2002, 124(28): 8416–8427

    CAS  PubMed  Google Scholar 

  42. Thiabaud G, Arambula J F, Siddik Z H, Sessler J L. Photoinduced reduction of Pt IV within an anti-proliferative Pt IV-texaphyrin conjugate. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(29): 8942–8947

    CAS  Google Scholar 

  43. Thiabaud G, Mccall R, He G, Arambula J F, Siddik Z H, Sessler J L. Activation of platinum(IV) prodrugs by motexafin gadolinium as a redox mediator. Angewandte Chemie International Edition, 2016, 55(41): 12626–12631

    CAS  PubMed  Google Scholar 

  44. Arambula J F, Sessler J L, Siddik Z H. Overcoming biochemical pharmacologic mechanisms of platinum resistance with a texaphyrin-platinum conjugate. Bioorganic & Medicinal Chemistry Letters, 2011, 21(6): 1701–1705

    CAS  Google Scholar 

  45. Arambula J F, Sessler J L, Siddik Z H. A texaphyrin-oxaliplatin conjugate that overcomes both pharmacologic and molecular mechanisms of cisplatin resistance in cancer cells. MedChemComm, 2012, 3(10): 1275–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee M H, Kim E J, Park S Y, Hong K S, Kim S, Sessler J L. Acid-triggered release of doxorubicin from a hydrazone-linked Gd3+-texaphyrin conjugate. Chemical Communications, 2016, 52(69): 10551–10554

    CAS  PubMed  Google Scholar 

  47. Blesic M, Melo E, Petrovski Z, Plechkova N V, Lopes N C, Seddon K R, Rebelo P N. On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. Journal of Physical Chemistry B, 2008, 112(29): 8645–8650

    CAS  Google Scholar 

  48. Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Aggregation-induced emission: Together we shine, united we soar! Chemical Reviews, 2015, 115(21): 11718–11940

    CAS  PubMed  Google Scholar 

  49. Quinn S D, Magennis S W. Optical detection of gadolinium(III) ions via quantum dot aggregation. RSC Advances, 2017, 7(40): 2470–2475

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (Grants CA68682 to J.L.S.) and the Robert A. Welch Foundation (F-0018). HDR would like to thank UT Austin for a Scientist in Residence Fellowship and the Los Alamos National Lab for a Seaborg Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Sessler.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Root, H.D., Thiabaud, G. & Sessler, J.L. Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution. Front. Chem. Sci. Eng. 14, 19–27 (2020). https://doi.org/10.1007/s11705-019-1888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1888-y

Keywords

Navigation