Skip to main content
Log in

SERS nanoprobes for bio-application

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The ability to tune the size, shape, composition and surface properties impart nanoparticles with the desired functions for bio-application. This article highlights some of the recent examples in the exploration of metal (e.g., gold and silver) nanoparticles, especially those with magnetic properties and bio-conjugated structures, as theranostic nanoprobes. Such nanoprobes exhibit tunable optical, spectroscopic, magnetic, and electrical properties for signal amplifications. Examples discussed in this article will focus on the nanoproble-enhanced colorimetric detection and surface enhanced Raman scattering (SERS) detection of biomarkers or biomolecules such as proteins and DNAs. The understanding of factors controlling the biomolecular interactions is essential for the design of SERS nanoprobes with theranostic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Y Q, Yan B, Chen L X. SERS tags: Novel optical nanoprobes for bioanalysis. Chemical Reviews, 2013, 113(3): 1391–1428

    Article  CAS  Google Scholar 

  2. Kneipp J, Kneipp H, Rice W L, Kneipp K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical Chemistry, 2005, 77(8): 2381–2385

    Article  CAS  Google Scholar 

  3. Driskell J D, Lipert R J, Porter M D. Labeled gold nanoparticles immobilized at smooth metallic substrates: Systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. Journal of Physical Chemistry B, 2006, 110(35): 17444–17451

    Article  CAS  Google Scholar 

  4. Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics, 2004, 120(1): 357–366

    Article  CAS  Google Scholar 

  5. Barhoumi A, Zhang D, Tam F, Halas N J. Surface-enhanced Raman spectroscopy of DNA. Journal of the American Chemical Society, 2008, 130(16): 5523–5529

    Article  CAS  Google Scholar 

  6. Chon H, Lee S, Son S W, Oh C H, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Analytical Chemistry, 2009, 81(8): 3029–3034

    Article  CAS  Google Scholar 

  7. Crew E, Yan H, Lin L Q, Skeete Z, Kotlyar T, Tchah N, Lee J, Bellavia M, Goodshaw I, Joseph P, Luo J, Gal S, Zhong C J. DNA assembly and enzymatic cutting in solutions: A gold nanoparticle based SERS detection strategy. Analyst(London), 2013, 138(17): 4941–4949

    CAS  Google Scholar 

  8. Lin L Q, Crew E, Yan H, Shan S, Skeete Z, Mott D, Krentsel T, Yin J, Chernova N A, Luo J, Engelhard M H, Wang C, Li Q B, Zhong C J. Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2013, 1(34): 4320–4330

    Article  CAS  Google Scholar 

  9. Njoki P N, Lim I I S, Mott D, Park H Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C J. Size correlation of optical and spectroscopic properties for gold nanoparticles. Journal of Physical Chemistry C, 2007, 111(40): 14664–14669

    Article  CAS  Google Scholar 

  10. Stoeva S I, Huo F, Lee J S, Mirkin C A. Three-layer composite magnetic nanoparticle probes for DNA. Journal of the American Chemical Society, 2005, 127(44): 15362–15363

    Article  CAS  Google Scholar 

  11. Lim I I S, Chandrachud U, Wang L, Gal S, Zhong C J. Assemblydisassembly of DNAs and gold nanoparticles: A strategy of intervention based on oligonucleotides and restriction enzymes. Analytical Chemistry, 2008, 80(15): 6038–6044

    Article  CAS  Google Scholar 

  12. Hnilova M, Khatayevich D, Carlson A, Oren E E, Gresswell C, Zheng S, Ohuchi F, Sarikaya M, Tamerler C. Single-step fabrication of patterned gold film array by an engineered multi-functional peptide. Journal of Colloid and Interface Science, 2012, 365(1): 97–102

    Article  CAS  Google Scholar 

  13. Bonham A J, Braun G, Pavel I, Moskovits M, Reich N O. Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. Journal of the American Chemical Society, 2007, 129(47): 14572–14573

    Article  CAS  Google Scholar 

  14. Sun L, Yu C, Irudayaraj J. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. Analytical Chemistry, 2007, 79(11): 3981–3988

    Article  CAS  Google Scholar 

  15. Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior Gap. Nature Nanotechnology, 2011, 6(7): 452–460

    Article  CAS  Google Scholar 

  16. Mark P R, Fabris L. Understanding nanoparticle assembly: A simulation approach to SERS-active dimers. Journal of Colloid and Interface Science, 2012, 369(1): 134–143

    Article  CAS  Google Scholar 

  17. Lim I I S, Zhong C J. Molecularly-mediated processing and assembly of nanoparticles: Exploring the interparticle interactions and structures. Accounts of Chemical Research, 2009, 42(6): 798–808

    Article  CAS  Google Scholar 

  18. Doering W E, Piotti M E, Natan M J, Freeman R G. SERS as a foundation for nanoscale, optically detected biological labels. Advanced Materials, 2007, 19(20): 3100–4108

    Article  CAS  Google Scholar 

  19. Lim I I S, Njoki P N, Park H Y, Wang X, Wang L, Mott D, Zhong C J. Gold and magnetic oxide/gold core/shell nanoparticles as biofunctional nanoprobes. Nanotechnology, 2008, 19(30): 305102

    Article  Google Scholar 

  20. Park H Y, Schadt MJ, Wang L, Lim I I S, Njoki P N, Kim S H, Jang M Y, Luo J, Zhong C J. Fabrication of magnetic core@shell Feoxide@ Au nanoparticles for interfacial bio-activity and bioseparation. Langmuir, 2007, 23(17): 9050–9056

    Article  CAS  Google Scholar 

  21. Yan H, Lim I I S, Zhang L C, Gao S C, Mott D, Le Y, An D L, Zhong C J. Rigid, conjugated and shaped arylethynes as mediators for the assembly of gold nanoparticles. Journal of Materials Chemistry, 2011, 21(6): 1890–1901

    Article  CAS  Google Scholar 

  22. Alvarez-Puebla R A, Liz-Marzán LM. Traps and cages for universal SERS detection. Chemical Society Reviews, 2012, 41(1): 43–51

    Article  CAS  Google Scholar 

  23. Li L, Hutter T, Finnemore A S, Huang F M, Baumberg J J, Elliott S R, Steiner U, Mahajan S. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Letters, 2012, 12(8): 4242–3246

    Article  CAS  Google Scholar 

  24. Zhou X, Xu WL, Wang Y, Kuang Q, Shi Y F, Zhong L B, Zhang Q Q. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. Journal of Physical Chemistry C, 2010, 114(46): 19607–19613

    Article  CAS  Google Scholar 

  25. Jun B H, Noh M S, Kim J Y, Kim G S, Kang H M, Kim M S, Seo Y T, Baek J H, Kim J H, Park J Y, Kim S Y, Kim Y K, Hyeon T W, Cho M H, Jeong D H, Lee Y S. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small, 2010, 6(1): 119–125

    Article  CAS  Google Scholar 

  26. Tao C A, An Q, Zhu W, Yang HW, Li WN, Lin C X, Xu D, Li G T. Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles. Chemical Communications, 2011, 47(35): 9867–9869

    Article  CAS  Google Scholar 

  27. Wang L, Xu L, Kuang H, Xu C, Kotov N A. Dynamic nanoparticle assemblies. Accounts of Chemical Research, 2012, 45(11): 1916–1926

    Article  CAS  Google Scholar 

  28. Jones MR, Osberg K D, Macfarlane R J, Langille MR, Mirkin C A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chemical Reviews, 2011, 111(6): 3736–3827

    Article  CAS  Google Scholar 

  29. Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294

    Article  CAS  Google Scholar 

  30. Lin M, Pei H, Yang F, Fan C, Zuo X. Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. Advanced Materials, 2013, 25(25): 3490–3496

    Article  CAS  Google Scholar 

  31. Ye S, Mao Y, Guo Y, Zhang S. Enzyme-based signal amplification of surface-enhanced Raman scattering in cancer-biomarker detection. Trends in Analytical Chemistry, 2014, 5: 43–54

    Article  Google Scholar 

  32. Barrow S J, Funston A M, Wei X, Mulvaney P. DNA-directed selfassembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today, 2013, 8(2): 138–167

    Article  CAS  Google Scholar 

  33. Njoki P N, Luo J, Kamundi MM, Lim I I S, Zhong C J. Aggregative growth in size-controlled growth of monodispersed gold nanoparticles. Langmuir, 2010, 26(16): 13622–13629

    Article  CAS  Google Scholar 

  34. Shields S P, Richards V N, Buhro W E. Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chemistry of Materials, 2010, 22(10): 3212–3225

    CAS  Google Scholar 

  35. Luo J, Maye M M, Han L. Kariuki N N, Jones V W, Lin Y, Engelhard M H, Zhong C J. Spectroscopic characterizations of molecularly-linked gold nanoparticle assemblies upon thermal treatment. Langmuir, 2004, 20(10): 4254–4260

    Article  CAS  Google Scholar 

  36. Lim S, Ouyang J, Luo J, Wang L, Zhou S, Zhong C J. Multifunctional fullerene-mediated assembly of gold nanoparticles. Chemistry of Materials, 2005, 17(26): 6528–6531

    Article  CAS  Google Scholar 

  37. Lim S, Vaiana C, Zhang Z Y, Zhang Y J, An D L, Zhong C J. Xshaped rigid arylethynes to mediate the assembly of nanoparticles. Journal of the American Chemical Society, 2007, 129(17): 5368–5369

    Article  CAS  Google Scholar 

  38. Schadt M J, Cheung W, Luo J, Zhong C J. Molecularly-tuned size selectivity in thermal processing of gold nanoparticles. Chemistry of Materials, 2006, 18(22): 5147–5148

    Article  CAS  Google Scholar 

  39. Maye M M, Zheng W X, Leibowitz F L, Ly Nv K, Zhong C J. Heating-induced evolution of thiolate-encapsulated gold nanoparticles: A strategy for size and shape manipulations. Langmuir, 2000, 16(2): 490–497

    Article  CAS  Google Scholar 

  40. Maye M M, Zhong C J. Manipulating core-shell reactivities for processing nanoparticle sizes and shapes. Journal of Materials Chemistry, 2000, 10(8): 1895–1901

    Article  CAS  Google Scholar 

  41. Mott D, Galkowski J, Wang L, Luo J, Zhong C J. Synthesis of sizecontrolled and shaped copper nanoparticles. Langmuir, 2007, 23(10): 5740–5745

    Article  CAS  Google Scholar 

  42. Wang L Y, Luo J, Fan Q, Suzuki M, Suzuki I S, Engelhard MH, Lin Y, Kim N, Wang J Q, Zhong C J. Synthesis and characterization of monolayer-capped PtVFe nanoparticles with controllable sizes and composition. Journal of Physical Chemistry B, 2005, 109: 21593–21601

    Article  CAS  Google Scholar 

  43. Wang L Y, Park H Y, Lim I I S, Schadt MJ, Mott D, Luo J, Wang X, Zhong C J. Core@shell nanomaterials: Gold-coated magnetic oxide nanoparticles. Journal of Materials Chemistry, 2008, 18(23): 2629–2635

    Article  CAS  Google Scholar 

  44. Wang X, Wang L Y, Lim I I S, Bao K, Mott D, Park H Y, Luo J, Hao S, Zhong C J. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite@Au nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9(5): 3005–3012

    Article  CAS  Google Scholar 

  45. Wang L Y, Luo J, Shan S, Crew E, Yin J, Zhong C J. Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Analytical Chemistry, 2011, 83(22): 8688–8695

    Article  CAS  Google Scholar 

  46. Wang L Y, Wang X, Luo J, Wanjala B N, Wang C, Chernova N, Engelhard M H, Bae I T, Liu Y, Zhong C J. Core-shell structured ternary magnetic nanocubes. Journal of the American Chemical Society, 2010, 132(50): 17686–17689

    Article  CAS  Google Scholar 

  47. Zeng H, Rice P M, Wang S X, Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. Journal of the American Chemical Society, 2004, 126(37): 11458–11459

    Article  CAS  Google Scholar 

  48. Wang L Y, Luo J, Maye M M, Fan Q, Rendeng Q, Engelhard M H, Wang C M, Lin Y H, Zhong C J. Iron oxide-gold core-shell nanoparticles and thin film assembly. Journal of Materials Chemistry, 2005, 15(18): 1821–1832

    Article  CAS  Google Scholar 

  49. Lim I I S, Ip W, Crew E, Njoki P N, Mott D, Zhong C J, Pan Y, Zhou S. Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir, 2007, 23(2): 826–833

    Article  CAS  Google Scholar 

  50. Jin R, Wu G, Li Z, Mirkin C A, Schatz G C. What controls the melting properties of DNA-linked gold nanoparticles assemblies? Journal of the American Chemical Society, 2003, 125(6): 1643–1654

    Article  CAS  Google Scholar 

  51. Lytton-Jean A K R, Han M S, Mirkin C A. Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Analytical Chemistry, 2007, 79(15): 6037–6041

    Article  CAS  Google Scholar 

  52. Li H, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958–10961

    Article  CAS  Google Scholar 

  53. Wang Z, Kanaras A G, Bates A D, Cosstick R, Brust M. Enzymatic DNA processing on gold nanoparticles. Journal of Materials Chemistry, 2004, 14(4): 578–580

    Article  CAS  Google Scholar 

  54. Porter MD, Lipert R J, Siperko LM, Wang G, Narayanana R. SERS as a bioassay platform: Fundamentals, design, and applications. Chemical Society Reviews, 2008, 37(5): 1001–1011

    Article  CAS  Google Scholar 

  55. Cheng H W, Huan S Y, Yu R Q. Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores. Analyst (London), 2012, 137(16): 3601–3608

    Article  CAS  Google Scholar 

  56. Cheng H W, Huan S Y, Wu H L, Shen G L, Yu R Q. Surfaceenhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates. Analytical Chemistry, 2009, 81(24): 9902–9912

    Article  CAS  Google Scholar 

  57. Cheng H W, Luo W Q, Wen G L, Huan S Y, Shen G L, Yu R Q. Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Analyst (London), 2010, 135(11): 2993–3001

    Article  CAS  Google Scholar 

  58. Cheng HW, Chen Y Y, Lin X X, Huan S Y, Wu H L, Shen G L, Yu R Q. Surface-enhanced Raman spectroscopic detection of bacillus subtilis spores using gold nanoparticle based substrates. Analytica Chimica Acta, 2011, 707(1-2): 155–163

    Article  CAS  Google Scholar 

  59. Brown K R, Walter D G, Natan M J. Seeding of colloidal Au nanoparticle solutions. 2._Improved control of particle size and shape. Chemistry of Materials, 2000, 12(2): 306–313

    CAS  Google Scholar 

  60. Zhang X Y, Young M A, Lyandres O, Van Duyne R P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2005, 127(12): 4484–4489

    Article  CAS  Google Scholar 

  61. Zhang X Y, Zhao J, Whitney A V, Elam J W, Van Duyne R P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society, 2006, 128(31): 10304–10309

    Article  CAS  Google Scholar 

  62. Lim I I S, Mott D, Ip W, Njoki P N, Pan Y, Zhou S, Zhong C J. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir, 2008, 24(16): 8857–8863

    Article  CAS  Google Scholar 

  63. Lim I I S, Mott D, Engelhard M, Pan Y, Kamodia S, Luo J, Njoki P N, Zhou S, Wang L, Zhong C J. Interparticle chiral recognition of enantiomers: A nanoparticle-based regulation strategy. Analytical Chemistry, 2009, 81(2): 689–698

    Article  CAS  Google Scholar 

  64. Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Chemical Communications, 1994, 7: 801–802

    Article  Google Scholar 

  65. Park H, Lee S, Chen L X, Lee E K, Shin S Y, Lee Y H, Son SW, Oh C H, Song J M, Kang S H, Choo J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Physical Chemistry Chemical Physics, 2009, 11(34): 7444–7449

    Article  CAS  Google Scholar 

  66. Wang Y Q, Chen L X, Liu P. Biocompatible triplex Ag@SiO2@m-TiO2 core-shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(19): 5935–5943

    CAS  Google Scholar 

  67. Zhang W W, Wang Y Q, Sun X Y, Wang W H, Chen L X. Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemophotothermal treatment. Nanoscale, 2014, 6(23): 14514–14522

    Article  CAS  Google Scholar 

  68. Lin D H, Qin T Q, Sun X Y, Chen L X. Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Applied Materials & Interfaces, 2014, 6(2): 1320–1329

    Article  CAS  Google Scholar 

  69. Niu X J, Chen H Y, Wang Y Q, Wang W H, Sun X Y, Chen L X. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Applied Materials & Interfaces, 2014, 6(7): 5152–5160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Wen Cheng or Chuan-Jian Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, HW., Luo, J. & Zhong, CJ. SERS nanoprobes for bio-application. Front. Chem. Sci. Eng. 9, 428–441 (2015). https://doi.org/10.1007/s11705-015-1536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1536-0

Keywords

Navigation